Claudon Baptiste, Zylberman Julien, Feniou César, Debbasch Fabrice, Peruzzo Alberto, Piquemal Jean-Philip
Qubit Pharmaceuticals, Advanced Research Department, Paris, France.
Sorbonne Université, LCT, UMR 7616 CNRS, Paris, France.
Nat Commun. 2024 Jul 13;15(1):5886. doi: 10.1038/s41467-024-50065-x.
Controlled operations are fundamental building blocks of quantum algorithms. Decomposing n-control-NOT gates (C(X)) into arbitrary single-qubit and CNOT gates, is a crucial but non-trivial task. This study introduces C(X) circuits outperforming previous methods in the asymptotic and non-asymptotic regimes. Three distinct decompositions are presented: an exact one using one borrowed ancilla with a circuit depth , an approximating one without ancilla qubits with a circuit depth and an exact one with an adjustable-depth circuit which decreases with the number m≤n of ancilla qubits available as . The resulting exponential speedup is likely to have a substantial impact on fault-tolerant quantum computing by improving the complexities of countless quantum algorithms with applications ranging from quantum chemistry to physics, finance and quantum machine learning.
受控操作是量子算法的基本构建块。将n控制非门(C(X))分解为任意单量子比特门和CNOT门是一项关键但并非易事的任务。本研究介绍了在渐近和非渐近情况下性能优于先前方法的C(X)电路。提出了三种不同的分解方法:一种精确分解方法,使用一个借用的辅助量子比特,电路深度为 ;一种无辅助量子比特的近似分解方法,电路深度为 ;以及一种具有可调深度电路的精确分解方法,该电路随着可用辅助量子比特数量m≤n的增加而减小,减小方式为 。由此产生的指数加速可能会通过提高从量子化学到物理、金融和量子机器学习等无数量子算法的复杂度,对容错量子计算产生重大影响。