Suppr超能文献

利用 CT 进行放射组学模型对严重社区获得性肺炎的早期检测和诊断。

A radiomics model utilizing CT for the early detection and diagnosis of severe community-acquired pneumonia.

机构信息

Pulmonary and Critical Care Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, Guangdong, 528300, China.

Departments of Hematology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), No.1, Jiazi Road, Lunjiao Street, Shunde District, Foshan, Guangdong, 528300, China.

出版信息

BMC Med Imaging. 2024 Aug 5;24(1):202. doi: 10.1186/s12880-024-01370-w.

Abstract

BACKGROUND

Community-Acquired Pneumonia (CAP) remains a significant global health concern, with a subset of cases progressing to Severe Community-Acquired Pneumonia (SCAP). This study aims to develop and validate a CT-based radiomics model for the early detection of SCAP to enable timely intervention and improve patient outcomes.

METHODS

A retrospective study was conducted on 115 CAP and SCAP patients at Southern Medical University Shunde Hospital from January to December 2021. Using the Pyradiomics package, 107 radiomic features were extracted from CT scans, refined via intra-class and inter-class correlation coefficients, and narrowed down using the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. The predictive performance of the radiomics-based model was assessed through receiver operating characteristic (ROC) analysis, employing machine learning classifiers such as k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF), trained and validated on datasets split 7:3, with a training set (n = 80) and a validation set (n = 35).

RESULTS

The radiomics model exhibited robust predictive performance, with the RF classifier achieving superior precision and accuracy compared to LR, SVM, and KNN classifiers. Specifically, the RF classifier demonstrated a precision of 0.977 (training set) and 0.833 (validation set), as well as an accuracy of 0.925 (training set) and 0.857 (validation set), suggesting its superior performance in both metrics. Decision Curve Analysis (DCA) was utilized to evaluate the clinical efficacy of the RF classifier, demonstrating a favorable net benefit within the threshold ranges of 0.1 to 0.8 for the training set and 0.2 to 0.7 for the validation set.

CONCLUSIONS

The radiomics model developed in this study shows promise for early SCAP detection and can improve clinical decision-making.

摘要

背景

社区获得性肺炎(CAP)仍然是一个重大的全球健康问题,其中一部分病例会进展为重症社区获得性肺炎(SCAP)。本研究旨在开发和验证一种基于 CT 的放射组学模型,以实现对 SCAP 的早期检测,从而能够及时进行干预并改善患者的预后。

方法

本研究对 2021 年 1 月至 12 月在南方医科大学顺德医院的 115 例 CAP 和 SCAP 患者进行了回顾性研究。使用 Pyradiomics 软件包,从 CT 扫描中提取了 107 个放射组学特征,通过组内和组间相关系数进行了优化,并使用最小绝对值收缩和选择算子(LASSO)回归模型进行了筛选。通过接收者操作特征(ROC)分析评估了放射组学模型的预测性能,采用了 K 近邻(KNN)、支持向量机(SVM)、逻辑回归(LR)和随机森林(RF)等机器学习分类器。这些分类器在 7:3 的数据集分割上进行了训练和验证,其中包括 80 个训练集和 35 个验证集。

结果

放射组学模型表现出了稳健的预测性能,RF 分类器在精度和准确性方面优于 LR、SVM 和 KNN 分类器。具体来说,RF 分类器在训练集和验证集上的精度分别为 0.977 和 0.833,准确性分别为 0.925 和 0.857,表明其在这两个指标上的性能都更优。决策曲线分析(DCA)用于评估 RF 分类器的临床疗效,结果表明,在训练集的阈值范围为 0.1 至 0.8 和验证集的阈值范围为 0.2 至 0.7 内,该分类器具有较好的净收益。

结论

本研究中开发的放射组学模型有望用于早期 SCAP 的检测,并能改善临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f7/11299375/08ad38a32a3c/12880_2024_1370_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验