Suppr超能文献

基于自动化人工智能驱动的 CT 定量模型对难治性肺炎支原体肺炎的诊断有效。

Model based on the automated AI-driven CT quantification is effective for the diagnosis of refractory Mycoplasma pneumoniae pneumonia.

机构信息

Department of Emergency/Critical Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.

School of Pediatrics, Nanjing Medical University, Nanjing, Jiangsu, China.

出版信息

Sci Rep. 2024 Jul 13;14(1):16172. doi: 10.1038/s41598-024-67255-8.

Abstract

The prediction of refractory Mycoplasma pneumoniae pneumonia (RMPP) remains a clinically significant challenge. This study aimed to develop an early predictive model utilizing artificial intelligence (AI)-derived quantitative assessment of lung lesion extent on initial computed tomography (CT) scans and clinical indicators for RMPP in pediatric inpatients. A retrospective cohort study was conducted on patients with M. pneumoniae pneumonia (MP) admitted to the Children's Hospital of Nanjing Medical University, China from January 2019 to December 2020. An early prediction model was developed by stratifying the patients with Mycoplasma pneumoniae pneumonia (MPP) into two cohorts according to the presence or absence of refractory pneumonia. A retrospective cohort of 126 children diagnosed with Mycoplasma pneumoniae pneumonia (MPP) was utilized as a training set, with 85 cases classified as RMPP. Subsequently, a prospective cohort comprising 54 MPP cases, including 37 instances of RMPP, was assembled as a validation set to assess the performance of the predictive model for RMPP from January to December 2021. We defined a constant Φ which can combine the volume and CT value of pulmonary lesions and be further used to calculate the logarithm of Φ to the base of 2 (LogΦ). A clinical-imaging prediction model was then constructed utilizing LogΦ and clinical characteristics. Performance was evaluated by the area under the receiver operating characteristic curve (AUC). The clinical model demonstrated AUC values of 0.810 and 0.782, while the imaging model showed AUC values of 0.764 and 0.769 in the training and test sets, respectively. The clinical-imaging model, incorporating LogΦ, temperature(T), aspartate aminotransferase (AST), preadmission fever duration (PFD), and preadmission macrolides therapy duration (PMTD), achieved the highest AUC values of 0.897 and 0.895 in the training and test sets, respectively. A prognostic model developed through automated quantification of lung disease on CT scans, in conjunction with clinical data in MPP may be utilized for the early identification of RMPP.

摘要

难治性肺炎支原体肺炎(RMPP)的预测仍然是一个具有临床意义的挑战。本研究旨在利用人工智能(AI)对初始计算机断层扫描(CT)扫描中肺部病变范围的定量评估以及儿科住院患者的临床指标,建立一种预测 RMPP 的早期模型。采用回顾性队列研究方法,收集 2019 年 1 月至 2020 年 12 月南京医科大学附属儿童医院收治的肺炎支原体肺炎(MP)患儿的临床资料。根据是否存在难治性肺炎,将肺炎支原体肺炎(MPP)患者分为两组,建立早期预测模型。将 126 例儿童肺炎支原体肺炎(MPP)患者作为训练集,其中 85 例为 RMPP;随后纳入 54 例 MPP 患者作为验证集,其中 RMPP 患者 37 例,用于评估该预测模型对 2021 年 1 月至 12 月 RMPP 的预测效能。定义常数 Φ,可综合反映肺部病变的体积和 CT 值,进一步计算以 2 为底的对数(LogΦ)。采用 LogΦ 及临床特征构建临床-影像预测模型,通过受试者工作特征曲线(ROC)下面积(AUC)评估模型效能。临床模型在训练集和验证集的 AUC 值分别为 0.810 和 0.782,影像模型分别为 0.764 和 0.769,临床-影像模型纳入 LogΦ、温度(T)、天冬氨酸氨基转移酶(AST)、入院前发热时间(PFD)和入院前大环内酯类药物治疗时间(PMTD)后,在训练集和验证集的 AUC 值分别为 0.897 和 0.895。通过对 CT 扫描中肺部疾病的自动量化并结合 MPP 的临床数据建立的预后模型,可能有助于早期识别 RMPP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/105f/11246496/d54fcb5218ba/41598_2024_67255_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验