Suppr超能文献

意大利吸烟动态的 compartmental 模型:在假设情景下进行推理、验证和预测的管道。

A compartmental model for smoking dynamics in Italy: a pipeline for inference, validation, and forecasting under hypothetical scenarios.

机构信息

Department of Statistics, Computer Science, Applications "Giuseppe Parenti" (DiSIA), University of Florence, Viale Giovanni Battista Morgagni 59/65, Florence, 50134, Italy.

Epidemiology and Health Research Lab, Institute of Clinical Physiology of the Italian National Research Council (IFC-CNR), Via Giuseppe Moruzzi 1, Pisa, 56124, Italy.

出版信息

BMC Med Res Methodol. 2024 Jul 13;24(1):148. doi: 10.1186/s12874-024-02271-w.

Abstract

We propose a compartmental model for investigating smoking dynamics in an Italian region (Tuscany). Calibrating the model on local data from 1993 to 2019, we estimate the probabilities of starting and quitting smoking and the probability of smoking relapse. Then, we forecast the evolution of smoking prevalence until 2043 and assess the impact on mortality in terms of attributable deaths. We introduce elements of novelty with respect to previous studies in this field, including a formal definition of the equations governing the model dynamics and a flexible modelling of smoking probabilities based on cubic regression splines. We estimate model parameters by defining a two-step procedure and quantify the sampling variability via a parametric bootstrap. We propose the implementation of cross-validation on a rolling basis and variance-based Global Sensitivity Analysis to check the robustness of the results and support our findings. Our results suggest a decrease in smoking prevalence among males and stability among females, over the next two decades. We estimate that, in 2023, 18% of deaths among males and 8% among females are due to smoking. We test the use of the model in assessing the impact on smoking prevalence and mortality of different tobacco control policies, including the tobacco-free generation ban recently introduced in New Zealand.

摘要

我们提出了一个房室模型来研究意大利托斯卡纳地区的吸烟动态。通过对 1993 年至 2019 年的当地数据进行校准,我们估计了开始和戒烟的概率以及吸烟复发的概率。然后,我们预测了吸烟流行率的演变,直至 2043 年,并根据归因死亡评估了对死亡率的影响。与该领域的先前研究相比,我们引入了一些新颖的元素,包括对控制模型动态的方程的正式定义,以及基于三次回归样条的灵活的吸烟概率建模。我们通过定义两步程序来估计模型参数,并通过参数引导自举来量化抽样变异性。我们提出了在滚动基础上实施交叉验证和基于方差的全局敏感性分析的建议,以检查结果的稳健性并支持我们的发现。我们的结果表明,在未来二十年中,男性的吸烟流行率将下降,而女性的吸烟流行率将保持稳定。我们估计,2023 年,男性中有 18%的死亡和女性中有 8%的死亡归因于吸烟。我们测试了该模型在评估不同烟草控制政策对吸烟流行率和死亡率的影响方面的应用,包括新西兰最近引入的无烟一代禁令。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dec/11245805/653eec83515f/12874_2024_2271_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验