Suppr超能文献

人工智能在前列腺特异性膜抗原正电子发射断层扫描中的价值:提高效率和改善结果的途径。

The value of artificial intelligence in PSMA PET: a pathway to improved efficiency and results.

作者信息

Dadgar Habibollah, Hong Xiaotong, Karimzadeh Reza, Ibragimov Bulat, Majidpour Jafar, Arabi Hossein, Al-Ibraheem Akram, Khalaf Aysar N, Anwar Farah M, Marafi Fahad, Haidar Mohamad, Jafari Esmail, Zarei Amin, Assadi Majid

机构信息

Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad, Iran.

School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China.

出版信息

Q J Nucl Med Mol Imaging. 2025 Jun;69(2):157-173. doi: 10.23736/S1824-4785.25.03640-4. Epub 2025 May 30.

Abstract

INTRODUCTION

This systematic review investigates the potential of artificial intelligence (AI) in improving the accuracy and efficiency of prostate-specific membrane antigen positron emission tomography (PSMA PET) scans for detecting metastatic prostate cancer.

EVIDENCE ACQUISITION

A comprehensive literature search was conducted across Medline, Embase, and Web of Science, adhering to PRISMA guidelines. Key search terms included "artificial intelligence," "machine learning," "deep learning," "prostate cancer," and "PSMA PET." The PICO framework guided the selection of studies focusing on AI's application in evaluating PSMA PET scans for staging lymph node and distant metastasis in prostate cancer patients. Inclusion criteria prioritized original English-language articles published up to October 2024, excluding studies using non-PSMA radiotracers, those analyzing only the CT component of PSMA PET-CT, studies focusing solely on intra-prostatic lesions, and non-original research articles.

EVIDENCE SYNTHESIS

The review included 22 studies, with a mix of prospective and retrospective designs. AI algorithms employed included machine learning (ML), deep learning (DL), and convolutional neural networks (CNNs). The studies explored various applications of AI, including improving diagnostic accuracy, sensitivity, differentiation from benign lesions, standardization of reporting, and predicting treatment response. Results showed high sensitivity (62% to 97%) and accuracy (AUC up to 98%) in detecting metastatic disease, but also significant variability in positive predictive value (39.2% to 66.8%).

CONCLUSIONS

AI demonstrates significant promise in enhancing PSMA PET scan analysis for metastatic prostate cancer, offering improved efficiency and potentially better diagnostic accuracy. However, the variability in performance and the "black box" nature of some algorithms highlight the need for larger prospective studies, improved model interpretability, and the continued involvement of experienced nuclear medicine physicians in interpreting AI-assisted results. AI should be considered a valuable adjunct, not a replacement, for expert clinical judgment.

摘要

引言

本系统评价研究了人工智能(AI)在提高前列腺特异性膜抗原正电子发射断层扫描(PSMA PET)检测转移性前列腺癌的准确性和效率方面的潜力。

证据获取

按照PRISMA指南,对Medline、Embase和Web of Science进行了全面的文献检索。关键检索词包括“人工智能”、“机器学习”、“深度学习”、“前列腺癌”和“PSMA PET”。PICO框架指导了对聚焦于AI在评估PSMA PET扫描以分期前列腺癌患者淋巴结和远处转移方面应用的研究的选择。纳入标准优先考虑截至2024年10月发表的英文原创文章,排除使用非PSMA放射性示踪剂的研究、仅分析PSMA PET-CT的CT成分的研究、仅关注前列腺内病变的研究以及非原创研究文章。

证据综合

该评价纳入了22项研究,包括前瞻性和回顾性设计。所采用的AI算法包括机器学习(ML)、深度学习(DL)和卷积神经网络(CNN)。这些研究探索了AI的各种应用,包括提高诊断准确性、敏感性、与良性病变的鉴别、报告标准化以及预测治疗反应。结果显示在检测转移性疾病方面具有高敏感性(62%至97%)和准确性(AUC高达98%),但阳性预测值也存在显著差异(39.2%至66.8%)。

结论

AI在增强PSMA PET扫描对转移性前列腺癌的分析方面显示出巨大潜力,可提高效率并可能提高诊断准确性。然而,性能的变异性以及一些算法的“黑箱”性质凸显了进行更大规模前瞻性研究、提高模型可解释性以及经验丰富的核医学医师持续参与解读AI辅助结果的必要性。AI应被视为专家临床判断的有价值辅助手段,而非替代品。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验