Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.
Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy.
Eur Radiol Exp. 2024 Jul 15;8(1):80. doi: 10.1186/s41747-024-00478-6.
Breast arterial calcifications (BAC) are common incidental findings on routine mammograms, which have been suggested as a sex-specific biomarker of cardiovascular disease (CVD) risk. Previous work showed the efficacy of a pretrained convolutional network (CNN), VCG16, for automatic BAC detection. In this study, we further tested the method by a comparative analysis with other ten CNNs.
Four-view standard mammography exams from 1,493 women were included in this retrospective study and labeled as BAC or non-BAC by experts. The comparative study was conducted using eleven pretrained convolutional networks (CNNs) with varying depths from five architectures including Xception, VGG, ResNetV2, MobileNet, and DenseNet, fine-tuned for the binary BAC classification task. Performance evaluation involved area under the receiver operating characteristics curve (AUC-ROC) analysis, F-score (harmonic mean of precision and recall), and generalized gradient-weighted class activation mapping (Grad-CAM++) for visual explanations.
The dataset exhibited a BAC prevalence of 194/1,493 women (13.0%) and 581/5,972 images (9.7%). Among the retrained models, VGG, MobileNet, and DenseNet demonstrated the most promising results, achieving AUC-ROCs > 0.70 in both training and independent testing subsets. In terms of testing F-score, VGG16 ranked first, higher than MobileNet (0.51) and VGG19 (0.46). Qualitative analysis showed that the Grad-CAM++ heatmaps generated by VGG16 consistently outperformed those produced by others, offering a finer-grained and discriminative localization of calcified regions within images.
Deep transfer learning showed promise in automated BAC detection on mammograms, where relatively shallow networks demonstrated superior performances requiring shorter training times and reduced resources.
Deep transfer learning is a promising approach to enhance reporting BAC on mammograms and facilitate developing efficient tools for cardiovascular risk stratification in women, leveraging large-scale mammographic screening programs.
• We tested different pretrained convolutional networks (CNNs) for BAC detection on mammograms. • VGG and MobileNet demonstrated promising performances, outperforming their deeper, more complex counterparts. • Visual explanations using Grad-CAM++ highlighted VGG16's superior performance in localizing BAC.
乳腺动脉钙化(BAC)是常规乳房 X 线摄影中的常见偶然发现,被认为是心血管疾病(CVD)风险的一种特定于性别的生物标志物。先前的工作表明,预训练卷积网络(CNN)VCG16 对于自动 BAC 检测是有效的。在这项研究中,我们通过与其他十个 CNN 的比较分析进一步测试了该方法。
本回顾性研究纳入了 1493 名女性的四视图标准乳房 X 线摄影检查,并由专家标记为 BAC 或非 BAC。比较研究使用了来自五个架构的十一个预训练卷积网络(CNN),包括 Xception、VGG、ResNetV2、MobileNet 和 DenseNet,这些网络经过微调以用于二元 BAC 分类任务。性能评估包括接受者操作特征曲线(ROC)下面积(AUC-ROC)分析、F 分数(精度和召回率的调和平均值)和广义梯度加权类激活映射(Grad-CAM++)的可视化解释。
该数据集显示 13.0%(194/1493 名)的女性和 9.7%(581/5972 张)的图像存在 BAC。在重新训练的模型中,VGG、MobileNet 和 DenseNet 表现出最有希望的结果,在训练和独立测试子集中均实现了 AUC-ROC > 0.70。就测试 F 分数而言,VGG16 排名第一,高于 MobileNet(0.51)和 VGG19(0.46)。定性分析表明,VGG16 生成的 Grad-CAM++热图始终优于其他热图,能够更精细和更具鉴别力地定位图像中的钙化区域。
深度迁移学习在乳腺 X 线摄影的自动 BAC 检测中显示出了前景,其中相对较浅的网络表现出了更优的性能,所需的训练时间更短,资源消耗更少。
深度迁移学习是一种有前途的方法,可以增强乳腺 X 线摄影的 BAC 报告,并为利用大规模乳腺筛查计划为女性进行心血管风险分层开发高效工具提供便利。
• 我们在乳房 X 线照片上测试了不同的预训练卷积网络(CNN)用于 BAC 检测。• VGG 和 MobileNet 表现出有希望的性能,优于它们更深、更复杂的对应物。• 使用 Grad-CAM++的可视化解释突出了 VGG16 在定位 BAC 方面的卓越性能。