Suppr超能文献

基于乳房X光照片的深度学习乳腺癌诊断——一项对比研究

Deep Learning for Breast Cancer Diagnosis from Mammograms-A Comparative Study.

作者信息

Tsochatzidis Lazaros, Costaridou Lena, Pratikakis Ioannis

机构信息

Visual Computing Group, Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece.

Department of Medical Physics, School of Medicine, University of Patras, 26504 Patras, Greece.

出版信息

J Imaging. 2019 Mar 13;5(3):37. doi: 10.3390/jimaging5030037.

Abstract

Deep convolutional neural networks (CNNs) are investigated in the context of computer-aided diagnosis (CADx) of breast cancer. State-of-the-art CNNs are trained and evaluated on two mammographic datasets, consisting of ROIs depicting benign or malignant mass lesions. The performance evaluation of each examined network is addressed in two training scenarios: the first involves initializing the network with pre-trained weights, while for the second the networks are initialized in a random fashion. Extensive experimental results show the superior performance achieved in the case of fine-tuning a pretrained network compared to training from scratch.

摘要

在乳腺癌计算机辅助诊断(CADx)的背景下,对深度卷积神经网络(CNN)进行了研究。在两个乳腺X线摄影数据集上对先进的CNN进行了训练和评估,这些数据集由描绘良性或恶性肿块病变的感兴趣区域(ROI)组成。在两种训练场景下对每个被检查网络进行性能评估:第一种是使用预训练权重初始化网络,而第二种是随机初始化网络。大量实验结果表明,与从头开始训练相比,微调预训练网络的情况下能取得更优的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74c6/8320909/db0a510304c6/jimaging-05-00037-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验