Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran.
BMC Plant Biol. 2024 Jul 15;24(1):671. doi: 10.1186/s12870-024-05380-2.
Water deficiency stress reduces yield in grain legumes, primarily due to a decrease in the pods number. Melatonin (ML) and 24-epibrassinolide (EBL) are recognized for their hormone-like properties that improve plant tolerance to abiotic stresses. This study aimed to assess the impact of different concentrations of ML (0, 100, and 200 µM) and EBL (0, 3, and 6 µM) on the growth, biochemical, and physiological characteristics of chickpea plants under water-stressed conditions.
The study's findings indicated that under water-stressed conditions, a decrease in seed (30%) and pod numbers (31%), 100-seed weight (17%), total chlorophyll content (46%), stomatal conductance (33%), as well as an increase in HO (62%), malondialdehyde content (40%), and electrolyte leakage index (40%), resulted in a 40% reduction in chickpea plants grain yield. Our findings confirmed that under water-stressed conditions, seed oil, seed oil yield, and seed protein yield dropped by 20%, 55%, and 36%, respectively. The concurrent exogenous application of ML and EBL significantly reduces oxidative stress, plasma membrane damage, and reactive oxygen species (ROS) content. This treatment also leads to increased yield and its components, higher pigment content, enhanced oil and protein yield, and improved enzymatic and non-enzymatic antioxidant activities such as catalase, superoxide dismutase, polyphenol oxidase, ascorbate peroxidase, guaiacol peroxidase, flavonoid, and carotenoid. Furthermore, it promotes the accumulation of osmoprotectants such as proline, total soluble protein, and sugars.
Our study found that ML and EBL act synergistically to regulate plant growth, photosynthesis, osmoprotectants accumulation, antioxidant defense systems, and maintain ROS homeostasis, thereby mitigating the adverse effects of water deficit conditions. ML and EBL are key regulatory network components in stressful conditions, with significant potential for future research and practical applications. The regulation metabolic pathways of ML and EBL in water-stressed remains unknown. As a result, future research should aim to elucidate the molecular mechanisms by employing genome editing, RNA sequencing, microarray, transcriptomic, proteomic, and metabolomic analyses to identify the mechanisms involved in plant responses to exogenous ML and EBL under water deficit conditions. Furthermore, the economical applications of synthetic ML and EBL could be an interesting strategy for improving plant tolerance.
水分亏缺胁迫会降低豆科作物的产量,主要是因为豆荚数量减少。褪黑素(ML)和 24-表油菜素内酯(EBL)因其具有激素样特性而被认可,可提高植物对非生物胁迫的耐受性。本研究旨在评估不同浓度 ML(0、100 和 200μM)和 EBL(0、3 和 6μM)对水分胁迫条件下鹰嘴豆植株生长、生化和生理特性的影响。
研究结果表明,在水分胁迫条件下,种子(30%)和豆荚数量(31%)、百粒重(17%)、总叶绿素含量(46%)、气孔导度(33%)下降,同时过氧化氢(HO)(62%)、丙二醛含量(40%)和电解质渗漏指数(40%)增加,导致鹰嘴豆植株的籽粒产量减少 40%。我们的研究结果证实,在水分胁迫条件下,种子油、种子油产量和种子蛋白产量分别下降了 20%、55%和 36%。同时外源施用 ML 和 EBL 可显著降低氧化应激、质膜损伤和活性氧(ROS)含量。这种处理还会导致产量和产量构成要素增加、色素含量更高、油和蛋白产量提高、以及过氧化物酶、多酚氧化酶、抗坏血酸过氧化物酶、愈创木酚过氧化物酶、类黄酮和类胡萝卜素等酶和非酶抗氧化剂活性增强。此外,它还促进脯氨酸、总可溶性蛋白和糖等渗透保护剂的积累。
本研究发现 ML 和 EBL 协同作用调节植物生长、光合作用、渗透保护剂积累、抗氧化防御系统,维持 ROS 平衡,从而减轻水分亏缺条件的不利影响。ML 和 EBL 是胁迫条件下关键的调控网络组成部分,具有很大的研究和实际应用潜力。ML 和 EBL 在水分胁迫下的调节代谢途径尚不清楚。因此,未来的研究应旨在通过使用基因组编辑、RNA 测序、微阵列、转录组学、蛋白质组学和代谢组学分析来阐明涉及植物对外源 ML 和 EBL 响应的分子机制,以确定在水分亏缺条件下植物的响应机制。此外,合成 ML 和 EBL 的经济应用可能是提高植物耐受性的一种有趣策略。