Feng Junan, Zhang Chaoyue, Liu Wendong, Yu Shunxian, Wang Lei, Wang Tianyi, Shi Chuan, Zhao Xiaoxian, Chen Shuangqiang, Chou Shulei, Song Jianjun
College of Physics, Qingdao University, Qingdao, 266071, P. R. China.
College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, P. R. China.
Angew Chem Int Ed Engl. 2024 Oct 7;63(41):e202407042. doi: 10.1002/anie.202407042. Epub 2024 Sep 6.
Lithium-sulfur batteries (LiSBs) with high energy density still face challenges on sluggish conversion kinetics, severe shuttle effects of lithium polysulfides (LiPSs), and low blocking feature of ordinary separators to LiPSs. To tackle these, a novel double-layer strategy to functionalize separators is proposed, which consists of Co with atomically dispersed CoN decorated on Ketjen black (Co/CoN@KB) layer and an ultrathin 2D TiCT MXene layer. The theoretical calculations and experimental results jointly demonstrate metallic Co sites provide efficient adsorption and catalytic capability for long-chain LiPSs, while CoN active sites facilitate the absorption of short-chain LiPSs and promote the conversion to LiS. The stacking MXene layer serves as a microscopic barrier to further physically block and chemically anchor the leaked LiPSs from the pores and gaps of the Co/CoN@KB layer, thus preserving LiPSs within efficient anchoring-conversion reaction interfaces to balance the accumulation of "dead S" and LiS. Consequently, with an ultralight loading of Co/CoN@KB-MXene, the LiSBs exhibit amazing electrochemical performance even under high sulfur loading and lean electrolyte, and the outperforming performance for lithium-selenium batteries (LiSeBs) can also be achieved. This work exploits a universal and effective strategy of a double-layer functionalized separator to regulate the equilibrium adsorption-catalytic interface, enabling high-energy and long-cycle LiSBs/LiSeBs.
具有高能量密度的锂硫电池(LiSBs)在缓慢的转化动力学、多硫化锂(LiPSs)严重的穿梭效应以及普通隔膜对LiPSs的低阻隔特性方面仍面临挑战。为了解决这些问题,提出了一种使隔膜功能化的新型双层策略,该策略由负载在科琴黑(Co/CoN@KB)层上的原子分散的CoN修饰的Co层和超薄二维TiCT MXene层组成。理论计算和实验结果共同表明,金属Co位点为长链LiPSs提供了高效的吸附和催化能力,而CoN活性位点促进了短链LiPSs的吸收并促进其向LiS的转化。堆叠的MXene层作为微观屏障,进一步物理阻挡并化学锚定从Co/CoN@KB层的孔隙和间隙中泄漏的LiPSs,从而将LiPSs保留在有效的锚定-转化反应界面内,以平衡“死硫”和LiS的积累。因此,在Co/CoN@KB-MXene超轻负载的情况下,LiSBs即使在高硫负载和贫电解质条件下也表现出惊人的电化学性能,并且对于锂硒电池(LiSeBs)也能实现优异的性能。这项工作开发了一种通用且有效的双层功能化隔膜策略来调节平衡吸附-催化界面,从而实现高能量和长循环的LiSBs/LiSeBs。