Suppr超能文献

肌腱去细胞基质改性的具有多孔和卷曲微观结构的纤维支架用于肌腱再生。

Tendon Decellularized Matrix Modified Fibrous Scaffolds with Porous and Crimped Microstructure for Tendon Regeneration.

机构信息

Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Department of Orthopedics Trauma and Hand Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning 530007, China.

出版信息

ACS Appl Bio Mater. 2024 Jul 15;7(7):4747-4759. doi: 10.1021/acsabm.4c00565. Epub 2024 Jun 19.

Abstract

Current engineered synthetic scaffolds fail to functionally repair and regenerate ruptured native tendon tissues, partly because they cannot satisfy both the unique biological and biomechanical properties of these tissues. Ideal scaffolds for tendon repair and regeneration need to provide porous topographic structures and biological cues necessary for the efficient infiltration and tenogenic differentiation of embedded stem cells. To obtain crimped and porous scaffolds, highly aligned poly(l-lactide) fibers were prepared by electrospinning followed by postprocessing. Through a mild and controlled hydrogen gas foaming technique, we successfully transformed the crimped fibrous mats into three-dimensional porous scaffolds without sacrificing the crimped microstructure. Porcine derived decellularized tendon matrix was then grafted onto this porous scaffold through fiber surface modification and carbodiimide chemistry. These biofunctionalized, crimped, and porous scaffolds supported the proliferation, migration, and tenogenic induction of tendon derived stem/progenitor cells, while enabling adhesion to native tendons. Together, our data suggest that these biofunctionalized scaffolds can be exploited as promising engineered scaffolds for the treatment of acute tendon rupture.

摘要

当前的工程合成支架未能有效地修复和再生破裂的天然肌腱组织,部分原因是它们不能同时满足这些组织独特的生物和生物力学特性。理想的肌腱修复和再生支架需要提供多孔的形貌结构和生物信号,以促进嵌入干细胞的有效浸润和肌腱分化。为了获得卷曲多孔支架,我们通过静电纺丝后处理制备了高度取向的聚(L-丙交酯)纤维。通过温和可控的氢气发泡技术,我们成功地将卷曲纤维垫转化为三维多孔支架,而不会牺牲卷曲的微观结构。然后通过纤维表面改性和碳化二亚胺化学将猪源性脱细胞肌腱基质接枝到这种多孔支架上。这些具有生物功能的卷曲多孔支架支持肌腱来源的干细胞/祖细胞的增殖、迁移和肌腱诱导,同时能够与天然肌腱黏附。总之,我们的数据表明,这些具有生物功能的支架可用作有前途的工程化支架,用于治疗急性肌腱断裂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验