Barron Alyssa, Jamieson James, Colombani Nicolò, Bostick Benjamin C, Ortega-Tong Pablo, Sbarbati Chiara, Barbieri Maurizio, Petitta Marco, Prommer Henning
School of Earth Sciences, University of Western Australia, Crawley 6009 WA, Australia.
Ekion Pty Ltd., Swanbourne 6010 WA, Australia.
ACS ES T Water. 2024 Jul 12;4(7):2944-2956. doi: 10.1021/acsestwater.4c00134. Epub 2024 Jun 24.
A multitude of geochemical processes control the aqueous concentration and transport properties of trace metal contaminants such as arsenic (As) in groundwater environments. Effective As remediation, especially under reducing conditions, has remained a significant challenge. Fe(II) nitrate treatments are a promising option for As immobilization but require optimization to be most effective. Here, we develop a process-based numerical modeling framework to provide an in-depth understanding of the geochemical mechanisms controlling the response of As-contaminated sediments to Fe(II) nitrate treatment. The analyzed data sets included time series from two batch experiments (control vs treatment) and effluent concentrations from a flow-through column experiment. The reaction network incorporates a mixture of homogeneous and heterogeneous reactions affecting Fe redox chemistry. Modeling revealed that the precipitation of the Fe treatment caused a rapid pH decline, which then triggered multiple heterogeneous buffering processes. The model quantifies key processes for effective remediation, including the transfer of aqueous As to adsorbed As and the transformation of Fe minerals, which act as sorption hosts, from amorphous to more stable phases. The developed model provides the basis for predictions of the remedial benefits of Fe(II) nitrate treatments under varying geochemical and hydrogeological conditions, particularly in high-As coastal environments.
众多地球化学过程控制着地下水环境中痕量金属污染物(如砷)的水相浓度和迁移特性。有效的砷修复,尤其是在还原条件下,仍然是一项重大挑战。硝酸铁处理是固定砷的一种有前景的选择,但需要优化才能达到最佳效果。在此,我们开发了一个基于过程的数值模拟框架,以深入了解控制受砷污染沉积物对硝酸铁处理响应的地球化学机制。分析的数据集包括来自两个批次实验(对照与处理)的时间序列以及来自一个流通柱实验的流出物浓度。反应网络包含影响铁氧化还原化学的均相和非均相反应的混合物。模拟结果表明,铁处理产生的沉淀导致pH值迅速下降,进而引发多个非均相缓冲过程。该模型量化了有效修复的关键过程,包括水相砷向吸附态砷的转移以及作为吸附主体的铁矿物从无定形相转变为更稳定相的过程。所开发的模型为预测在不同地球化学和水文地质条件下,特别是在高砷沿海环境中硝酸铁处理的修复效果提供了基础。