Suppr超能文献

鉴定和量化硝酸盐依赖型铁(II)氧化过程中的中间过程。

Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation.

机构信息

School of Earth Sciences , University of Western Australia , Crawley , Western Australia 6009 , Australia.

CSIRO Land and Water , Private Bag No. 5 , Wembley , Western Australia 6913 , Australia.

出版信息

Environ Sci Technol. 2018 May 15;52(10):5771-5781. doi: 10.1021/acs.est.8b01122. Epub 2018 May 3.

Abstract

Microbially driven nitrate-dependent iron (Fe) oxidation (NDFO) in subsurface environments has been intensively studied. However, the extent to which Fe(II) oxidation is biologically catalyzed remains unclear because no neutrophilic iron-oxidizing and nitrate reducing autotroph has been isolated to confirm the existence of an enzymatic pathway. While mixotrophic NDFO bacteria have been isolated, understanding the process is complicated by simultaneous abiotic oxidation due to nitrite produced during denitrification. In this study, the relative contributions of biotic and abiotic processes during NDFO were quantified through the compilation and model-based interpretation of previously published experimental data. The kinetics of chemical denitrification by Fe(II) (chemodenitrification) were assessed, and compelling evidence was found for the importance of organic ligands, specifically exopolymeric substances secreted by bacteria, in enhancing abiotic oxidation of Fe(II). However, nitrite alone could not explain the observed magnitude of Fe(II) oxidation, with 60-75% of overall Fe(II) oxidation attributed to an enzymatic pathway for investigated strains: Acidovorax ( A.) strain BoFeN1, 2AN, A. ebreus strain TPSY, Paracoccus denitrificans Pd 1222, and Pseudogulbenkiania sp. strain 2002. By rigorously quantifying the intermediate processes, this study eliminated the potential for abiotic Fe(II) oxidation to be exclusively responsible for NDFO and verified the key contribution from an additional, biological Fe(II) oxidation process catalyzed by NDFO bacteria.

摘要

微生物驱动的硝酸盐依赖型铁(Fe)氧化(NDFO)在地下环境中已得到深入研究。然而,由于尚未分离出能够氧化亚铁并还原硝酸盐的自养微生物来证实酶促途径的存在,因此生物催化亚铁氧化的程度仍不清楚。虽然已经分离出混合营养型 NDFO 细菌,但由于反硝化过程中产生的亚硝酸盐导致同时存在非生物氧化,因此理解这一过程变得复杂。在这项研究中,通过汇编和基于模型的解释先前发表的实验数据,量化了 NDFO 过程中生物和非生物过程的相对贡献。评估了 Fe(II)的化学反硝化动力学(化学反硝化),并发现了有力的证据表明有机配体(特别是细菌分泌的胞外聚合物)在增强 Fe(II)的非生物氧化中具有重要作用。然而,仅亚硝酸盐无法解释观察到的 Fe(II)氧化幅度,在研究的菌株中,有 60-75%的总 Fe(II)氧化归因于酶促途径:食酸菌属( Acidovorax )菌株 BoFeN1、2AN、嗜酸食酸菌( A. ebreus )菌株 TPSY、脱氮副球菌( Paracoccus denitrificans )Pd 1222 和假诺卡氏菌( Pseudogulbenkiania )菌株 2002。通过严格量化中间过程,本研究排除了非生物 Fe(II)氧化可能完全负责 NDFO 的可能性,并验证了 NDFO 细菌催化的额外生物 Fe(II)氧化过程的关键贡献。

相似文献

1
Identifying and Quantifying the Intermediate Processes during Nitrate-Dependent Iron(II) Oxidation.
Environ Sci Technol. 2018 May 15;52(10):5771-5781. doi: 10.1021/acs.est.8b01122. Epub 2018 May 3.
2
Oxidation of Fe(II)-EDTA by nitrite and by two nitrate-reducing Fe(II)-oxidizing Acidovorax strains.
Geobiology. 2015 Mar;13(2):198-207. doi: 10.1111/gbi.12125. Epub 2015 Jan 22.
3
Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
Appl Environ Microbiol. 2018 Jan 2;84(2). doi: 10.1128/AEM.02013-17. Print 2018 Jan 15.
5
Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria.
Appl Environ Microbiol. 2014 Feb;80(3):1051-61. doi: 10.1128/AEM.03277-13. Epub 2013 Nov 22.
6
Fe(II) oxidation is an innate capability of nitrate-reducing bacteria that involves abiotic and biotic reactions.
J Bacteriol. 2013 Jul;195(14):3260-8. doi: 10.1128/JB.00058-13. Epub 2013 May 17.
7
Oxidation of Fe(II)-Organic Matter Complexes in the Presence of the Mixotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacterium Acidovorax sp. BoFeN1.
Environ Sci Technol. 2018 May 15;52(10):5753-5763. doi: 10.1021/acs.est.8b00953. Epub 2018 Apr 27.
8
Ligand-enhanced abiotic iron oxidation and the effects of chemical versus biological iron cycling in anoxic environments.
Environ Sci Technol. 2013 Mar 19;47(6):2602-11. doi: 10.1021/es3049459. Epub 2013 Feb 27.
10
Denitrification and Nitrate-Dependent Fe(II) Oxidation in Various Pseudogulbenkiania Strains.
Microbes Environ. 2016 Sep 29;31(3):293-8. doi: 10.1264/jsme2.ME16001. Epub 2016 Jul 15.

引用本文的文献

3
Single Phototrophic Bacterium-Mediated Iron Cycling in Aquatic Environments.
Research (Wash D C). 2024 Nov 18;7:0528. doi: 10.34133/research.0528. eCollection 2024.
4
Model-Based Analysis of Arsenic Retention by Stimulated Iron Mineral Transformation under Coastal Aquifer Conditions.
ACS ES T Water. 2024 Jul 12;4(7):2944-2956. doi: 10.1021/acsestwater.4c00134. Epub 2024 Jun 24.
5
" Siderophilus nitratireducens": a putative -dependent nitrate-reducing iron oxidizer within the new order Siderophiliales.
ISME Commun. 2024 Jan 20;4(1):ycae008. doi: 10.1093/ismeco/ycae008. eCollection 2024 Jan.
6
Nitrogen removal in freshwater sediments of riparian zone: N-loss pathways and environmental controls.
Front Microbiol. 2023 Aug 17;14:1239055. doi: 10.3389/fmicb.2023.1239055. eCollection 2023.
8
Pyrite-Based Autotrophic Denitrifying Microorganisms Derived from Paddy Soils: Effects of Organic Co-Substrate Addition.
Int J Environ Res Public Health. 2022 Sep 18;19(18):11763. doi: 10.3390/ijerph191811763.
9
Underestimation about the Contribution of Nitrate Reducers to Iron Cycling Indicated by Strain.
Molecules. 2022 Aug 30;27(17):5581. doi: 10.3390/molecules27175581.
10
PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.
Appl Environ Microbiol. 2022 Aug 9;88(15):e0097422. doi: 10.1128/aem.00974-22. Epub 2022 Jul 18.

本文引用的文献

1
In Situ Magnetite Formation and Long-Term Arsenic Immobilization under Advective Flow Conditions.
Environ Sci Technol. 2016 Sep 20;50(18):10162-71. doi: 10.1021/acs.est.6b02362. Epub 2016 Aug 26.
2
Denitrification and Nitrate-Dependent Fe(II) Oxidation in Various Pseudogulbenkiania Strains.
Microbes Environ. 2016 Sep 29;31(3):293-8. doi: 10.1264/jsme2.ME16001. Epub 2016 Jul 15.
3
Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.
Environ Sci Technol. 2016 Aug 16;50(16):8538-47. doi: 10.1021/acs.est.6b02661. Epub 2016 Jul 26.
4
Stimulation of Fe(II) Oxidation, Biogenic Lepidocrocite Formation, and Arsenic Immobilization by Pseudogulbenkiania Sp. Strain 2002.
Environ Sci Technol. 2016 Jun 21;50(12):6449-58. doi: 10.1021/acs.est.6b00562. Epub 2016 Jun 3.
5
Metagenomic Analyses of the Autotrophic Fe(II)-Oxidizing, Nitrate-Reducing Enrichment Culture KS.
Appl Environ Microbiol. 2016 Apr 18;82(9):2656-2668. doi: 10.1128/AEM.03493-15. Print 2016 May.
6
Numerical Modeling of Arsenic Mobility during Reductive Iron-Mineral Transformations.
Environ Sci Technol. 2016 Mar 1;50(5):2459-67. doi: 10.1021/acs.est.5b05956. Epub 2016 Feb 18.
7
Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate.
Chemosphere. 2016 Feb;144:1106-15. doi: 10.1016/j.chemosphere.2015.09.045. Epub 2015 Oct 23.
8
Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer.
Front Microbiol. 2015 Sep 8;6:879. doi: 10.3389/fmicb.2015.00879. eCollection 2015.
9
Stable isotopes and iron oxide mineral products as markers of chemodenitrification.
Environ Sci Technol. 2015 Mar 17;49(6):3444-52. doi: 10.1021/es504862x. Epub 2015 Feb 26.
10
Oxidation of Fe(II)-EDTA by nitrite and by two nitrate-reducing Fe(II)-oxidizing Acidovorax strains.
Geobiology. 2015 Mar;13(2):198-207. doi: 10.1111/gbi.12125. Epub 2015 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验