Suppr超能文献

小离子水簇中水离解的主方程建模:Ag(HO) ,n = 4 - 6

Master equation modeling of water dissociation in small ionic water clusters: Ag(HO) , = 4-6.

作者信息

Hütter Michael, Schöpfer Gabriel, Salzburger Magdalena, Beyer Martin K, Ončák Milan

机构信息

Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria

出版信息

RSC Adv. 2024 Jul 12;14(31):22185-22194. doi: 10.1039/d4ra03518f.

Abstract

We model temperature-dependent blackbody infrared radiative dissociation (BIRD) rate coefficients of Ag(HO) , = 4-6, a system with loosely bound water molecules. We employ a master equation modeling (MEM) approach with consideration of absorption and emission of blackbody radiation, comparing single and multiple-well descriptions. The unimolecular dissociation rate coefficients are obtained using the Rice-Ramsperger-Kassel-Marcus (RRKM) theory, employing two approaches to model the sum of states in the transition state, the rigid activated complex (RAC) and the phase space limit (PSL) approach. A genetic algorithm is used to find structures of low-lying isomers for the kinetic modeling. We show that the multiple-well MEM approach with PSL RRKM in the (AWATAR) variant provides a reliable description of Ag(HO) BIRD, in agreement with previously published experimental data. Higher-lying isomers contribute significantly to the overall dissociation rate coefficient, underlying the importance of the multiple-well ansatz in which all isomers are treated on the same footing.

摘要

我们对Ag(HO) ( = 4 - 6)的温度依赖黑体红外辐射解离(BIRD)速率系数进行建模,该体系含有结合松散的水分子。我们采用主方程建模(MEM)方法,考虑黑体辐射的吸收和发射,比较单阱和多阱描述。单分子解离速率系数使用赖斯-拉姆齐-卡斯尔-马库斯(RRKM)理论获得,采用两种方法对过渡态的态和进行建模,即刚性活化络合物(RAC)和相空间极限(PSL)方法。使用遗传算法寻找用于动力学建模的低能异构体结构。我们表明,采用PSL RRKM的多阱MEM方法的(AWATAR)变体能够可靠地描述Ag(HO) BIRD,这与先前发表的实验数据一致。高能异构体对整体解离速率系数有显著贡献,这突出了多阱假设的重要性,即所有异构体都在同等基础上进行处理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deda/11244579/3a4960a14206/d4ra03518f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验