Suppr超能文献

深度突变扫描揭示了SWEET家族转运蛋白的序列到功能的限制。

Deep mutational scanning reveals sequence to function constraints for SWEET family transporters.

作者信息

Narayanan Krishna K, Weigle Austin T, Xu Lingyun, Mi Xuenan, Zhang Chen, Chen Li-Qing, Procko Erik, Shukla Diwakar

机构信息

Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

bioRxiv. 2024 Jul 2:2024.06.28.601307. doi: 10.1101/2024.06.28.601307.

Abstract

Protein science is entering a transformative phase enabled by deep mutational scans that provide an unbiased view of the residue level interactions that mediate function. However, it has yet to be extensively used to characterize the mutational and evolutionary landscapes of plant proteins. Here, we apply the method to explore sequence-function relationships within the sugar transporter AtSWEET13. DMS results describe how mutational interrogation throughout different regions of the protein affects AtSWEET13 abundance and transport function. Our results identify novel transport-enhancing mutations that are validated using the FRET sensor assays. Extending DMS results to phylogenetic analyses reveal the role of transmembrane helix 4 (TM4) which makes the SWEET family transporters distinct from prokaryotic SemiSWEETs. We show that transmembrane helix 4 is intolerant to motif swapping with other clade-specific SWEET TM4 compositions, despite accommodating single point-mutations towards aromatic and charged polar amino acids. We further show that the transfer learning approaches based on physics and ML based variant prediction tools have limited utility for engineering plant proteins as they were unable to reproduce our experimental results. We conclude that DMS can produce datasets which, when combined with the right predictive computational frameworks, can direct plant engineering efforts through derivative phenotype selection and evolutionary insights.

摘要

蛋白质科学正进入一个变革阶段,这得益于深度突变扫描,它能提供介导功能的残基水平相互作用的无偏视图。然而,它尚未被广泛用于表征植物蛋白质的突变和进化图谱。在此,我们应用该方法来探索糖转运蛋白AtSWEET13内的序列-功能关系。深度突变扫描(DMS)结果描述了对蛋白质不同区域进行突变询问如何影响AtSWEET13的丰度和转运功能。我们的结果鉴定出了新的增强转运的突变,这些突变通过荧光共振能量转移(FRET)传感器测定法得到了验证。将DMS结果扩展到系统发育分析揭示了跨膜螺旋4(TM4)的作用,它使SWEET家族转运蛋白与原核生物的半SWEETs不同。我们表明,尽管跨膜螺旋4能容纳向芳香族和带电荷极性氨基酸的单点突变,但它不耐受与其他进化枝特异性SWEET TM4组成进行基序交换。我们进一步表明,基于物理学和基于机器学习的变异预测工具的迁移学习方法在工程化植物蛋白质方面效用有限,因为它们无法重现我们的实验结果。我们得出结论,DMS可以生成数据集,当与合适的预测计算框架相结合时,这些数据集可以通过衍生表型选择和进化见解来指导植物工程工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94fa/11244857/3cf6d32d4b57/nihpp-2024.06.28.601307v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验