Suppr超能文献

在自然对话中,通过共享基于模型的语言空间,将我们的思想从大脑传送到大脑。

A shared model-based linguistic space for transmitting our thoughts from brain to brain in natural conversations.

机构信息

Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA.

Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Cognitive and Brain Sciences and Business School, Hebrew University, Jerusalem 9190501, Israel.

出版信息

Neuron. 2024 Sep 25;112(18):3211-3222.e5. doi: 10.1016/j.neuron.2024.06.025. Epub 2024 Aug 2.

Abstract

Effective communication hinges on a mutual understanding of word meaning in different contexts. We recorded brain activity using electrocorticography during spontaneous, face-to-face conversations in five pairs of epilepsy patients. We developed a model-based coupling framework that aligns brain activity in both speaker and listener to a shared embedding space from a large language model (LLM). The context-sensitive LLM embeddings allow us to track the exchange of linguistic information, word by word, from one brain to another in natural conversations. Linguistic content emerges in the speaker's brain before word articulation and rapidly re-emerges in the listener's brain after word articulation. The contextual embeddings better capture word-by-word neural alignment between speaker and listener than syntactic and articulatory models. Our findings indicate that the contextual embeddings learned by LLMs can serve as an explicit numerical model of the shared, context-rich meaning space humans use to communicate their thoughts to one another.

摘要

有效的沟通取决于对不同语境下单词含义的相互理解。我们在五对癫痫患者的自发性面对面对话中使用脑电图记录大脑活动。我们开发了一种基于模型的耦合框架,该框架将说话者和听话者的大脑活动与来自大型语言模型 (LLM) 的共享嵌入空间对齐。上下文敏感的 LLM 嵌入允许我们从一个大脑到另一个大脑,逐字逐句地跟踪自然对话中的语言信息交换。语言内容在说话者的大脑中先于单词发音出现,并在单词发音后迅速重新出现在听者的大脑中。上下文嵌入比句法和发音模型更好地捕捉说话者和听者之间逐字的神经对齐。我们的发现表明,LLM 学习的上下文嵌入可以作为人类用来相互交流思想的共享、丰富上下文意义空间的显式数字模型。

相似文献

10
Speaker-listener neural coupling underlies successful communication.说话者-听者神经耦合是成功交流的基础。
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14425-30. doi: 10.1073/pnas.1008662107. Epub 2010 Jul 26.

引用本文的文献

9
Constructed languages are processed by the same brain mechanisms as natural languages.人造语言和自然语言由相同的大脑机制进行处理。
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2313473122. doi: 10.1073/pnas.2313473122. Epub 2025 Mar 17.

本文引用的文献

6
Feature-space selection with banded ridge regression.带脊岭回归的特征空间选择。
Neuroimage. 2022 Dec 1;264:119728. doi: 10.1016/j.neuroimage.2022.119728. Epub 2022 Nov 8.
7
A hierarchy of linguistic predictions during natural language comprehension.自然语言理解过程中的语言预测层次。
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2201968119. doi: 10.1073/pnas.2201968119. Epub 2022 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验