Harutyunyan Ani, Gabrielyan Liana, Aghajanyan Anush, Gevorgyan Susanna, Schubert Robin, Betzel Christian, Kujawski Wojciech, Gabrielyan Lilit
Department of Biochemistry, Microbiology and Biotechnology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia.
Research Institute of Biology, Biology Faculty, Yerevan State University, 1 Alex Manoukian Str., Yerevan 0025, Armenia.
ACS Omega. 2024 Jun 26;9(27):29410-29421. doi: 10.1021/acsomega.4c01604. eCollection 2024 Jul 9.
The "green synthesis" of nanoparticles (NPs) offers cost-effective and environmentally friendly advantages over chemical synthesis by utilizing biological sources such as bacteria, algae, fungi, or plants. In this context, cyanobacteria and their components are valuable sources to produce various NPs. The present study describes the comparative analysis of physicochemical and antibacterial properties of chemically synthesized (Chem-AgNPs) and cyanobacteria -derived silver NPs (Splat-AgNPs). The physicochemical characterization applying complementary dynamic light scattering and transmission electron microscopy revealed that Splat-AgNPs have an average hydrodynamic radius of ∼ 28.70 nm and spherical morphology, whereas Chem-AgNPs are irregular-shaped with an average radius size of ∼ 53.88 nm. The X-ray diffraction pattern of Splat-AgNPs confirms the formation of face-centered cubic crystalline AgNPs by "green synthesis". Energy-dispersive spectroscopy analysis demonstrated the purity of the Splat-AgNPs. Fourier transform infrared spectroscopy analysis of Splat-AgNPs demonstrated the involvement of some functional groups in the formation of NPs. Additionally, Splat-AgNPs demonstrated high colloidal stability with a zeta-potential value of (-50.0 ± 8.30) mV and a pronounced bactericidal activity against selected Gram-positive ( and ) and Gram-negative ( and ) bacteria compared with Chem-AgNPs. Furthermore, our studies toward understanding the action mechanism of NPs showed that Splat-AgNPs alter the permeability of bacterial membranes and the energy-dependent H-fluxes via FF-ATPase, thus playing a crucial role in bacterial energetics. The insights gained from this study show that -derived synthesis is a low-cost, simple approach to producing stable AgNPs for their energy-metabolism-targeted antibacterial applications in biotechnology and biomedicine.
与通过使用细菌、藻类、真菌或植物等生物来源进行化学合成相比,纳米颗粒(NPs)的“绿色合成”具有成本效益且环境友好的优势。在此背景下,蓝细菌及其成分是生产各种纳米颗粒的宝贵来源。本研究描述了化学合成的(化学合成银纳米颗粒,Chem-AgNPs)和蓝细菌衍生的银纳米颗粒(Splat-AgNPs)的物理化学和抗菌性能的比较分析。应用互补的动态光散射和透射电子显微镜进行的物理化学表征表明,Splat-AgNPs的平均流体动力学半径约为28.70nm,呈球形形态,而Chem-AgNPs形状不规则,平均半径尺寸约为53.88nm。Splat-AgNPs的X射线衍射图谱证实了通过“绿色合成”形成了面心立方晶体银纳米颗粒。能量色散光谱分析证明了Splat-AgNPs的纯度。Splat-AgNPs的傅里叶变换红外光谱分析表明一些官能团参与了纳米颗粒的形成。此外,与Chem-AgNPs相比,Splat-AgNPs表现出高胶体稳定性,ζ电位值为(-50.0±8.30)mV,对选定的革兰氏阳性(和)和革兰氏阴性(和)细菌具有显著的杀菌活性。此外,我们对理解纳米颗粒作用机制的研究表明,Splat-AgNPs通过FF-ATPase改变细菌膜的通透性和能量依赖性H通量,从而在细菌能量学中发挥关键作用。本研究获得的见解表明,衍生合成是一种低成本、简单的方法,可用于生产稳定的银纳米颗粒,用于生物技术和生物医学中以能量代谢为靶点的抗菌应用。