文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

影响纳米粒子在生物医学应用中毒性的结构参数:综述

Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review.

作者信息

Abbasi Reza, Shineh Ghazal, Mobaraki Mohammadmahdi, Doughty Sarah, Tayebi Lobat

机构信息

Department of Bioengineering, McGill University, Montreal, QC Canada.

Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, 15916-34311 Iran.

出版信息

J Nanopart Res. 2023;25(3):43. doi: 10.1007/s11051-023-05690-w. Epub 2023 Feb 27.


DOI:10.1007/s11051-023-05690-w
PMID:36875184
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9970140/
Abstract

Rapidly growing interest in using nanoparticles (NPs) for biomedical applications has increased concerns about their safety and toxicity. In comparison with bulk materials, NPs are more chemically active and toxic due to the greater surface area and small size. Understanding the NPs' mechanism of toxicity, together with the factors influencing their behavior in biological environments, can help researchers to design NPs with reduced side effects and improved performance. After overviewing the classification and properties of NPs, this review article discusses their biomedical applications in molecular imaging and cell therapy, gene transfer, tissue engineering, targeted drug delivery, Anti-SARS-CoV-2 vaccines, cancer treatment, wound healing, and anti-bacterial applications. There are different mechanisms of toxicity of NPs, and their toxicity and behaviors depend on various factors, which are elaborated on in this article. More specifically, the mechanism of toxicity and their interactions with living components are discussed by considering the impact of different physiochemical parameters such as size, shape, structure, agglomeration state, surface charge, wettability, dose, and substance type. The toxicity of polymeric, silica-based, carbon-based, and metallic-based NPs (including plasmonic alloy NPs) have been considered separately.

摘要

将纳米颗粒(NPs)用于生物医学应用的兴趣迅速增长,这引发了人们对其安全性和毒性的担忧。与块状材料相比,由于纳米颗粒具有更大的表面积和更小的尺寸,它们在化学上更具活性且毒性更大。了解纳米颗粒的毒性机制以及影响其在生物环境中行为的因素,有助于研究人员设计出副作用更小、性能更优的纳米颗粒。在概述了纳米颗粒的分类和特性之后,这篇综述文章讨论了它们在分子成像与细胞治疗、基因传递、组织工程、靶向药物递送、抗SARS-CoV-2疫苗、癌症治疗、伤口愈合以及抗菌应用等生物医学领域的应用。纳米颗粒存在不同的毒性机制,其毒性和行为取决于多种因素,本文将对此进行详细阐述。更具体地说,通过考虑不同物理化学参数(如尺寸、形状、结构、团聚状态、表面电荷、润湿性、剂量和物质类型)的影响,讨论了毒性机制及其与生物成分的相互作用。本文分别探讨了聚合物基、二氧化硅基、碳基和金属基纳米颗粒(包括等离子体合金纳米颗粒)的毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/2645fd529bff/11051_2023_5690_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/9f452ffbf8f2/11051_2023_5690_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/fe9e230aab2d/11051_2023_5690_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/85170bdaf0ce/11051_2023_5690_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/741fe0d7538c/11051_2023_5690_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/3eaf91134944/11051_2023_5690_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/9c080c786fef/11051_2023_5690_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/924510d0f518/11051_2023_5690_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/49e6c3fb6536/11051_2023_5690_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/3e43f424acbe/11051_2023_5690_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/93eeefb50248/11051_2023_5690_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/b08c6a3efa90/11051_2023_5690_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/698a88d26267/11051_2023_5690_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/9f63f83aea50/11051_2023_5690_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/f6d49c986b06/11051_2023_5690_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/2645fd529bff/11051_2023_5690_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/9f452ffbf8f2/11051_2023_5690_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/fe9e230aab2d/11051_2023_5690_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/85170bdaf0ce/11051_2023_5690_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/741fe0d7538c/11051_2023_5690_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/3eaf91134944/11051_2023_5690_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/9c080c786fef/11051_2023_5690_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/924510d0f518/11051_2023_5690_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/49e6c3fb6536/11051_2023_5690_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/3e43f424acbe/11051_2023_5690_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/93eeefb50248/11051_2023_5690_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/b08c6a3efa90/11051_2023_5690_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/698a88d26267/11051_2023_5690_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/9f63f83aea50/11051_2023_5690_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/f6d49c986b06/11051_2023_5690_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e2b/9970140/2645fd529bff/11051_2023_5690_Fig15_HTML.jpg

相似文献

[1]
Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review.

J Nanopart Res. 2023

[2]
Evaluating the toxicity of selected types of nanochemicals.

Rev Environ Contam Toxicol. 2012

[3]
Toxicity Concerns of Therapeutic Nanomaterials.

J Nanosci Nanotechnol. 2019-4-1

[4]
Surface engineering of inorganic nanoparticles for imaging and therapy.

Adv Drug Deliv Rev. 2012-9-6

[5]
Copper oxide nanoparticles: In vitro and in vivo toxicity, mechanisms of action and factors influencing their toxicology.

Comp Biochem Physiol C Toxicol Pharmacol. 2023-9

[6]
Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.

Acc Chem Res. 2018-10-15

[7]
Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity.

Pharmaceutics. 2023-6-3

[8]
Functional DNA Molecules Enable Selective and Stimuli-Responsive Nanoparticles for Biomedical Applications.

Acc Chem Res. 2019-8-14

[9]
Overview on experimental models of interactions between nanoparticles and the immune system.

Biomed Pharmacother. 2016-10

[10]
Multifunctional Nanoparticles in Precise Cancer Treatment: Considerations in Design and Functionalization of Nanocarriers.

Curr Top Med Chem. 2020

引用本文的文献

[1]
Structural and functional properties of neodymium-doped hydroxyapatite nanoparticles for biomedical applications.

Biotechnol Rep (Amst). 2025-8-15

[2]
Evaluation of the safety profile of a metal-based nanosystem for developing antimicrobial polymer membranes in healthcare applications.

Nanoscale Adv. 2025-8-12

[3]
Biomolecule-functionalized dental implant surfaces: Towards augmenting soft tissue integration.

Bioact Mater. 2025-7-26

[4]
Biobased Organic Nanoparticles: A Promising Versatile Green Tool for Novel Antimicrobial Agents for Improved Safety.

Int J Food Sci. 2025-7-18

[5]
Impact of Polystyrene Microplastics on Human Sperm Functionality: An In Vitro Study of Cytotoxicity, Genotoxicity and Fertility-Related Genes Expression.

Toxics. 2025-7-19

[6]
Nanoparticle technologies in precision oncology and personalized vaccine development: Challenges and advances.

Int J Pharm X. 2025-7-5

[7]
Challenges and opportunities in the application of carbon nanotubes as membrane channels to improve mass transfer to cells.

RSC Adv. 2025-7-14

[8]
Metal-Based Nanoparticles with Biostimulatory Effects: Harnessing Nanotechnology for Enhanced Agricultural Sustainability.

Materials (Basel). 2025-7-2

[9]
Ag/ZnO nanodots from Artemisia austroyunnanensis as antibacterial and anticancer agents against human neuroblastoma cells.

Sci Rep. 2025-7-2

[10]
Unravelling the role of nanomedicine in attenuating inflammation, oxidative stress and cellular ageing in chronic obstructive pulmonary disease.

Arch Toxicol. 2025-6-29

本文引用的文献

[1]
"Nanodecoys" - Future of drug delivery by encapsulating nanoparticles in natural cell membranes.

Int J Pharm. 2022-6-10

[2]
Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications.

Chemphyschem. 2022-11-4

[3]
AgNPs/nGOx/Apra nanocomposites for synergistic antimicrobial therapy and scarless skin recovery.

J Mater Chem B. 2022-3-2

[4]
Toward Gene Transfer Nanoparticles as Therapeutics.

Adv Healthc Mater. 2022-4

[5]
Collagen-ZnO Scaffolds for Wound Healing Applications: Role of Dendrimer Functionalization and Nanoparticle Morphology.

ACS Appl Bio Mater. 2018-12-17

[6]
"Overview of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, Efficacy and Safety" [Response To Letter].

Infect Drug Resist. 2021-10-28

[7]
mRNA vaccines for infectious diseases: principles, delivery and clinical translation.

Nat Rev Drug Discov. 2021-11

[8]
Lipid nanoparticles for mRNA delivery.

Nat Rev Mater. 2021

[9]
A Self-Assembling Amphiphilic Peptide Dendrimer-Based Drug Delivery System for Cancer Therapy.

Pharmaceutics. 2021-7-17

[10]
Enhanced Drug Delivery to Solid Tumors via Drug-Loaded Nanocarriers: An Image-Based Computational Framework.

Front Oncol. 2021-6-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索