Suppr超能文献

利用机器学习从运动学预测先天性马蹄内翻足儿童及正常发育同龄人关节力矩。

Prediction of joint moments from kinematics using machine learning in children with congenital talipes equino varus and typically developing peers.

作者信息

Kothurkar Rohan, Gad Mayuri, Padate Abhiroop, Rathod Chasanal, Bhaskar Atul, Lekurwale Ramesh, Rose John

机构信息

Department of Mechanical Engineering, K. J. Somaiya College of Engineering, Mumbai, India.

St. Xavier's Gait Lab, Xavier Institute of Engineering, Mumbai, India.

出版信息

J Orthop. 2024 Jun 17;57:83-89. doi: 10.1016/j.jor.2024.06.016. eCollection 2024 Nov.

Abstract

BACKGROUND

Understanding joint loading and the crucial role of joint moments is essential for developing treatment strategies in gait analysis, which often requires the precise estimation of joint moments through an inverse dynamic approach. This process necessitates the use of a force plate synchronized with a motion capture system. However, effectively capturing ground reaction force in typically developing (TD) children and those with congenital talipes equino varus (CTEV) presents challenges, while the availability and high cost of additional force plates pose additional challenges. Therefore the study aimed to develop, train, and identify the most effective machine learning (ML) model to predict joint moments from kinematics for TD children and those with CTEV.

METHOD

In a study at the Gait Lab, 13 children with bilateral CTEV and 17 TD children underwent gait analysis to measure kinematics and kinetics, using a 12-camera Qualisys Motion Capture System and an AMTI force plate. ML models were then trained to predict joint moments from kinematic data as input.

RESULTS

The random forest regressor and deep neural networks (DNN) proved most effective in predicting joint moments from kinematics for TD children, yielding better results. The Random Forest regressor achieved an average r of 0.75 and nRMSE of 23.03 % for TD children, and r of 0.74 and 23.82 % for CTEV. DNN achieved an average r of 0.75 and nRMSE of 22.83 % for TD children, and r of 0.76 and nRMSE of 23.9 % for CTEV.

CONCLUSIONS

The findings suggest that using machine learning to predict joint moments from kinematics shows moderate potential as an alternative to traditional gait analysis methods for both TD children and those with CTEV. Despite its potential, the current prediction accuracy limitations hinder the immediate clinical application of these techniques for decision-making in a pediatric population.

摘要

背景

了解关节负荷以及关节力矩的关键作用对于制定步态分析中的治疗策略至关重要,这通常需要通过逆动力学方法精确估计关节力矩。此过程需要使用与运动捕捉系统同步的测力台。然而,在正常发育(TD)儿童和先天性马蹄内翻足(CTEV)患儿中有效捕捉地面反作用力存在挑战,而额外测力台的可用性和高成本带来了更多挑战。因此,本研究旨在开发、训练并确定最有效的机器学习(ML)模型,以根据运动学数据预测TD儿童和CTEV患儿的关节力矩。

方法

在步态实验室的一项研究中,13名双侧CTEV患儿和17名TD儿童接受了步态分析,以测量运动学和动力学数据,使用12台Qualisys运动捕捉系统和一个AMTI测力台。然后训练ML模型,以运动学数据作为输入来预测关节力矩。

结果

随机森林回归器和深度神经网络(DNN)被证明在根据运动学数据预测TD儿童的关节力矩方面最为有效,效果更佳。随机森林回归器对TD儿童的平均相关系数r为0.75,归一化均方根误差(nRMSE)为23.03%;对CTEV患儿的r为0.74,nRMSE为23.82%。DNN对TD儿童的平均r为0.75,nRMSE为22.83%;对CTEV患儿的r为0.76,nRMSE为23.9%。

结论

研究结果表明,利用机器学习根据运动学数据预测关节力矩,对于TD儿童和CTEV患儿而言,作为传统步态分析方法的替代方案具有一定潜力。尽管有其潜力,但目前预测准确性的局限性阻碍了这些技术在儿科人群决策中的直接临床应用。

相似文献

8
Interventions for congenital talipes equinovarus (clubfoot).先天性马蹄内翻足的干预措施。
Cochrane Database Syst Rev. 2012 Apr 18(4):CD008602. doi: 10.1002/14651858.CD008602.pub2.

本文引用的文献

9
Tibiofemoral contact forces during walking, running and sidestepping.步行、跑步和侧步时的胫股接触力。
Gait Posture. 2016 Sep;49:78-85. doi: 10.1016/j.gaitpost.2016.06.014. Epub 2016 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验