Mahesh Nandhini, Devishamani Chitralekha S, Raghu Keerthana, Mahalingam Maanasi, Bysani Pragathi, Chakravarthy Arjun V, Raman Rajiv
Shri Bhagwan Mahavir Vitreoretinal Services, Sankara Nethralaya, Medical Research Foundation Chennai, Tamil Nadu, India.
Archbishop Mitty High School, High School San Jose, California, USA.
Am J Transl Res. 2024 Jun 15;16(6):2166-2179. doi: 10.62347/WQWV9220. eCollection 2024.
The integration of artificial intelligence (AI) into the healthcare domain is a monumental shift with profound implications for diagnostics, medical interventions, and the overall structure of healthcare systems.
This study explores the transformative journey of foundation AI models in healthcare, shedding light on the challenges, ethical considerations, and vast potential they hold for improving patient outcome and system efficiency. Notably, in this investigation we observe a relatively slow adoption of AI within the public sector of healthcare. The evolution of AI in healthcare is un-paralleled, especially its prowess in revolutionizing diagnostic processes.
This research showcases how these foundational models can unravel hidden patterns within complex medical datasets. The impact of AI reverberates through medical interventions, encompassing pathology, imaging, genomics, and personalized healthcare, positioning AI as a cornerstone in the quest for precision medicine. The paper delves into the applications of generative AI models in critical facets of healthcare, including decision support, medical imaging, and the prediction of protein structures. The study meticulously evaluates various AI models, such as transfer learning, RNN, autoencoders, and their roles in the healthcare landscape. A pioneering concept introduced in this exploration is that of General Medical AI (GMAI), advocating for the development of reusable and flexible AI models.
The review article discusses how AI can revolutionize healthcare by stressing the significance of transparency, fairness and accountability, in AI applications regarding patient data privacy and biases. By tackling these issues and suggesting a governance structure the article adds to the conversation about AI integration in healthcare environments.
将人工智能(AI)整合到医疗保健领域是一项具有重大意义的转变,对诊断、医疗干预以及医疗保健系统的整体结构都有着深远影响。
本研究探讨了基础人工智能模型在医疗保健领域的变革之旅,揭示了它们在改善患者预后和系统效率方面所面临的挑战、伦理考量以及巨大潜力。值得注意的是,在本次调查中我们观察到人工智能在医疗保健公共部门的采用相对缓慢。人工智能在医疗保健领域的发展是无与伦比的,尤其是其在革新诊断流程方面的卓越能力。
本研究展示了这些基础模型如何在复杂的医学数据集中揭示隐藏模式。人工智能的影响在医疗干预中得到体现,涵盖病理学、影像学、基因组学和个性化医疗保健,使人工智能成为精准医学探索中的基石。本文深入探讨了生成式人工智能模型在医疗保健关键方面的应用,包括决策支持、医学成像和蛋白质结构预测。该研究精心评估了各种人工智能模型,如迁移学习、循环神经网络(RNN)、自动编码器及其在医疗保健领域的作用。本探索中引入的一个开创性概念是通用医学人工智能(GMAI),倡导开发可重复使用且灵活的人工智能模型。
这篇综述文章讨论了人工智能如何通过强调在涉及患者数据隐私和偏差的人工智能应用中透明度、公平性和问责制的重要性来彻底改变医疗保健。通过解决这些问题并提出一种治理结构,本文为关于人工智能在医疗保健环境中整合的讨论增添了内容。