Tarafder Sumit, Roche Rahmatullah, Bhattacharya Debswapna
Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States.
Biol Methods Protoc. 2024 Jul 2;9(1):bpae047. doi: 10.1093/biomethods/bpae047. eCollection 2024.
Transformers are a powerful subclass of neural networks catalyzing the development of a growing number of computational methods for RNA structure modeling. Here, we conduct an objective and empirical study of the predictive modeling accuracy of the emerging transformer-based methods for RNA structure prediction. Our study reveals multi-faceted complementarity between the methods and underscores some key aspects that affect the prediction accuracy.
Transformer是神经网络中的一个强大子类,它推动了越来越多用于RNA结构建模的计算方法的发展。在此,我们对新兴的基于Transformer的RNA结构预测方法的预测建模准确性进行了客观的实证研究。我们的研究揭示了这些方法之间多方面的互补性,并强调了一些影响预测准确性的关键方面。