School of Mathematical Sciences, Nankai University, Tianjin, 300071, China.
MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China.
Nat Commun. 2023 Nov 9;14(1):7266. doi: 10.1038/s41467-023-42528-4.
RNA 3D structure prediction is a long-standing challenge. Inspired by the recent breakthrough in protein structure prediction, we developed trRosettaRNA, an automated deep learning-based approach to RNA 3D structure prediction. The trRosettaRNA pipeline comprises two major steps: 1D and 2D geometries prediction by a transformer network; and 3D structure folding by energy minimization. Benchmark tests suggest that trRosettaRNA outperforms traditional automated methods. In the blind tests of the 15 Critical Assessment of Structure Prediction (CASP15) and the RNA-Puzzles experiments, the automated trRosettaRNA predictions for the natural RNAs are competitive with the top human predictions. trRosettaRNA also outperforms other deep learning-based methods in CASP15 when measured by the Z-score of the Root-Mean-Square Deviation. Nevertheless, it remains challenging to predict accurate structures for synthetic RNAs with an automated approach. We hope this work could be a good start toward solving the hard problem of RNA structure prediction with deep learning.
RNA 三维结构预测是一个长期存在的挑战。受近期蛋白质结构预测方面的突破启发,我们开发了 trRosettaRNA,这是一种基于深度学习的自动化 RNA 三维结构预测方法。trRosettaRNA 流水线包括两个主要步骤:通过变换网络预测一维和二维几何形状;通过能量最小化进行三维结构折叠。基准测试表明,trRosettaRNA 优于传统的自动化方法。在第十五届结构预测评估(CASP15)和 RNA-Puzzles 实验的盲测中,针对天然 RNA 的自动化 trRosettaRNA 预测与顶级人类预测具有竞争力。当用均方根偏差的 Z 分数来衡量时,trRosettaRNA 在 CASP15 中的表现也优于其他基于深度学习的方法。然而,用自动化方法预测合成 RNA 的准确结构仍然具有挑战性。我们希望这项工作能够为使用深度学习解决 RNA 结构预测这一难题提供一个良好的开端。