Suppr超能文献

人工智能在癌症治疗中的潜在应用。

Potential application of artificial intelligence in cancer therapy.

机构信息

Department of AI and Informatics, Mayo Clinic, Minnesota.

Division of Hematology and Oncology, Mayo Clinic, Phoenix, Arizona.

出版信息

Curr Opin Oncol. 2024 Sep 1;36(5):437-448. doi: 10.1097/CCO.0000000000001068. Epub 2024 Jun 24.

Abstract

PURPOSE OF REVIEW

This review underscores the critical role and challenges associated with the widespread adoption of artificial intelligence in cancer care to enhance disease management, streamline clinical processes, optimize data retrieval of health information, and generate and synthesize evidence.

RECENT FINDINGS

Advancements in artificial intelligence models and the development of digital biomarkers and diagnostics are applicable across the cancer continuum from early detection to survivorship care. Additionally, generative artificial intelligence has promised to streamline clinical documentation and patient communications, generate structured data for clinical trial matching, automate cancer registries, and facilitate advanced clinical decision support. Widespread adoption of artificial intelligence has been slow because of concerns about data diversity and data shift, model reliability and algorithm bias, legal oversight, and high information technology and infrastructure costs.

SUMMARY

Artificial intelligence models have significant potential to transform cancer care. Efforts are underway to deploy artificial intelligence models in the cancer practice, evaluate their clinical impact, and enhance their fairness and explainability. Standardized guidelines for the ethical integration of artificial intelligence models in cancer care pathways and clinical operations are needed. Clear governance and oversight will be necessary to gain trust in artificial intelligence-assisted cancer care by clinicians, scientists, and patients.

摘要

目的综述

本文强调了人工智能在癌症护理中的广泛应用所带来的关键作用和挑战,以加强疾病管理、简化临床流程、优化健康信息数据检索、生成和综合证据。

最近的发现

人工智能模型的进步以及数字生物标志物和诊断技术的发展可适用于癌症连续体的各个方面,从早期检测到生存护理。此外,生成式人工智能有望简化临床文档和患者沟通,为临床试验匹配生成结构化数据,自动化癌症登记,并促进先进的临床决策支持。由于对数据多样性和数据转移、模型可靠性和算法偏差、法律监督以及高信息技术和基础设施成本的担忧,人工智能的广泛采用一直较为缓慢。

总结

人工智能模型具有显著改变癌症护理的潜力。目前正在努力将人工智能模型部署到癌症实践中,评估其临床影响,并提高其公平性和可解释性。需要制定标准化指南,以将人工智能模型纳入癌症护理路径和临床操作的伦理整合中。需要明确的治理和监督,以获得临床医生、科学家和患者对人工智能辅助癌症护理的信任。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验