Suppr超能文献

无扭转的MoTe₂/MoS₂异质双层中的红外层间激子

Infrared Interlayer Excitons in Twist-Free MoTe/MoS Heterobilayers.

作者信息

Ju Qiankun, Cai Qian, Jian Chuanyong, Hong Wenting, Sun Fapeng, Wang Bicheng, Liu Wei

机构信息

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

出版信息

Adv Mater. 2024 Aug;36(35):e2404371. doi: 10.1002/adma.202404371. Epub 2024 Jul 15.

Abstract

Excitonic devices based on interlayer excitons in van der Waals heterobilayers are a promising platform for advancing photoelectric interconnection telecommunications. However, the absence of exciton emission in the crucial telecom C-band has constrained their practical applications. Here, this limitation is addressed by reporting exciton emission at 0.8 eV (1550 nm) in a chemically vapor-deposited, strictly aligned MoTe/MoS heterobilayer, resulting from the direct bandgap transitions of interlayer excitons as identified by momentum-space imaging of their electrons and holes. The decay mechanisms dominated by direct radiative recombination ensure constant emission quantum yields, a basic demand for efficient excitonic devices. The atomically sharp interface enables the resolution of two narrowly-splitter transitions induced by spin-orbit coupling, further distinguished through the distinct Landé g-factors as the fingerprint of spin configurations. By electrical control, the double transitions coupling into opposite circularly-polarized photon modes, preserve or reverse the helicities of the incident light with a degree of polarization up to 90%. The Stark effect tuning extends the emission energy range by over 150 meV (270 nm), covering the telecom C-band. The findings provide a material platform for studying the excitonic complexes and significantly boost the application prospects of excitonic devices in silicon photonics and all-optical telecommunications.

摘要

基于范德华异质双层中层间激子的激子器件是推进光电互连通信的一个有前景的平台。然而,关键的电信C波段中缺乏激子发射限制了它们的实际应用。在此,通过报道在化学气相沉积、严格对齐的MoTe/MoS异质双层中0.8电子伏特(1550纳米)处的激子发射来解决这一限制,这是由层间激子的直接带隙跃迁产生的,其电子和空穴的动量空间成像确定了这一点。由直接辐射复合主导的衰减机制确保了恒定的发射量子产率,这是高效激子器件的一个基本要求。原子级尖锐的界面使得能够分辨由自旋轨道耦合引起的两个窄分裂跃迁,通过不同的朗德g因子进一步区分,作为自旋构型的指纹。通过电控制,双跃迁耦合到相反的圆偏振光子模式,以高达90%的偏振度保持或反转入射光的螺旋度。斯塔克效应调谐将发射能量范围扩展了超过150毫电子伏特(270纳米),覆盖了电信C波段。这些发现为研究激子复合体提供了一个材料平台,并显著提升了激子器件在硅光子学和全光通信中的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验