Alexeev Evgeny M, Purser Carola M, Gilardoni Carmem M, Kerfoot James, Chen Hao, Cadore Alisson R, Rosa Bárbara L T, Feuer Matthew S G, Javary Evans, Hays Patrick, Watanabe Kenji, Taniguchi Takashi, Tongay Seth Ariel, Kara Dhiren M, Atatüre Mete, Ferrari Andrea C
Cambridge Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, CB3 0FA Cambridge, U.K.
Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
Nano Lett. 2024 Sep 11;24(36):11232-11238. doi: 10.1021/acs.nanolett.4c02635. Epub 2024 Aug 30.
Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS/MoSe heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS/MoSe heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.
过渡金属二硫属化物异质双层中的层间激子结合了高结合能和谷对比物理特性,具有长光学寿命和强偶极特性。其永久电偶极使发射能量、寿命和位置能够通过电场进行控制。器件材料和几何结构通过其实空间和动量空间构型影响层间激子的性质。在此,我们表明MoS/MoSe异质双层中的层间激子由位于布里渊区边缘的电荷载流子形成,层间杂化可忽略不计。我们发现莫尔超晶格导致谷依赖光学选择规则的反转,产生正值的g因子和交叉极化光致发光。时间分辨光致发光测量表明,层间激子群体在其微秒级的寿命中保持光诱导的谷极化。长光学寿命和谷极化保留的结合使MoS/MoSe异质双层成为研究基本玻色子相互作用和开发用于光信息处理的激子电路的有前途的平台。