Li Xiang, Sun Zhaoxi, Fang Yu-Yan, Huang Xiao-Li, Huang Xinning, Li Jin-Fang, Zhang Zuo-Yuan, Liu Jin-Ming
College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
Changping Laboratory, Beijing 102206, China.
Molecules. 2024 Nov 27;29(23):5617. doi: 10.3390/molecules29235617.
Quantum heat engines (QHEs) are established by applying the principles of quantum thermodynamics to small-scale systems, which leverage quantum effects to gain certain advantages. In this study, we investigate the quantum Otto cycle by employing the dipole-dipole coupled polar molecules as the working substance of QHE. Here, the molecules are considered to be trapped within an optical lattice and located in an external electric field. We analyze the work output and the efficiency of the quantum Otto heat engine (QOHE) as a function of various physical parameters, including electric field strength, dipole-dipole interaction and temperatures of heat baths. It is found that by adjusting these physical parameters the performance of the QOHE can be optimized effectively. Moreover, we also examine the influences of the entanglement and relative entropy of coherence for the polar molecules in thermal equilibrium states on the QOHE. Our results demonstrate the potential of polar molecules in achieving QHEs.
量子热机(QHEs)是通过将量子热力学原理应用于小规模系统而建立的,这些系统利用量子效应来获得某些优势。在本研究中,我们通过采用偶极 - 偶极耦合的极性分子作为量子热机的工作物质来研究量子奥托循环。在此,分子被认为被困在光学晶格中并处于外部电场中。我们分析了量子奥托热机(QOHE)的功输出和效率作为各种物理参数的函数,这些参数包括电场强度、偶极 - 偶极相互作用以及热库温度。研究发现,通过调整这些物理参数,可以有效地优化量子奥托热机的性能。此外,我们还研究了处于热平衡态的极性分子的纠缠和相干相对熵对量子奥托热机的影响。我们的结果证明了极性分子在实现量子热机方面的潜力。