School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):37390-37400. doi: 10.1021/acsami.4c02079. Epub 2024 Jul 15.
() is an opportunistic infectious pathogen, which causes a high mortality rate during bloodstream infections. The early detection of virulent strains in patients' blood samples is of medical interest for rapid diagnosis. The main virulent factors identified in patient isolates include leukocidins that bind to specific membrane receptors and lyse immune cells and erythrocytes. Duffy antigen receptor for chemokines (DARC) on the surface of specific cells is a main target of leukocidins such as gamma-hemolysin AB (HlgAB) and leukocidin ED (LukED). Among them, HlgAB is a conserved and critical leukocidin that binds to DARC and forms pores on the cell membranes, leading to cell lysis. Current methods are based on ELISA or bacterial culture, which takes hours to days. For detecting HlgAB with faster response and higher sensitivity, we developed a biosensor that combines single-walled carbon nanotube field effect transistors (swCNT-FETs) with immobilized DARC receptors as biosensing elements. DARC was purified from a bacterial expression system and successfully reconstituted into nanodiscs that preserve binding capability for HlgAB. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) showed an increase of the DARC-containing nanodisc size in the presence of HlgAB, indicating the formation of HlgAB prepore or pore complexes. We demonstrate that this sensor can specifically detect the leukocidins HlgA and HlgAB in a quantitative manner within the dynamic range of 1 fM to 100 pM with an LOD of 0.122 fM and an LOQ of 0.441 fM. The sensor was challenged with human serum spiked with HlgAB as simulated clinical samples. After dilution for decreasing nonspecific binding, it selectively detected the toxin with a similar detection range and apparent dissociation constant as in the buffer. This biosensor was demonstrated with remarkable sensitivity to detect HlgAB rapidly and has the potential as a tool for fundamental research and clinical applications, although this sensor cannot differentiate between HlgAB and LukED as both have the same receptor.
()是一种机会性感染病原体,在血流感染中导致高死亡率。在患者的血液样本中快速检测到毒力株对于快速诊断具有医学意义。在患者分离株中鉴定出的主要毒力因子包括与特定膜受体结合并裂解免疫细胞和红细胞的白细胞毒素。趋化因子的 Duffy 抗原受体 (DARC) 是白细胞毒素(如γ-溶血素 AB (HlgAB) 和白细胞毒素 ED (LukED))的主要靶标。其中,HlgAB 是一种保守且关键的白细胞毒素,它与 DARC 结合并在细胞膜上形成孔,导致细胞裂解。目前的方法基于 ELISA 或细菌培养,需要数小时到数天。为了更快地响应和更高的灵敏度检测 HlgAB,我们开发了一种生物传感器,该传感器将单壁碳纳米管场效应晶体管 (swCNT-FET) 与作为生物传感元件的固定化 DARC 受体相结合。DARC 从细菌表达系统中纯化出来,并成功地重新构成保留与 HlgAB 结合能力的纳米盘。动态光散射 (DLS) 和扫描电子显微镜 (SEM) 显示,在存在 HlgAB 的情况下,含有 DARC 的纳米盘的大小增加,表明形成了 HlgAB 前孔或孔复合物。我们证明,该传感器可以在 1 fM 至 100 pM 的动态范围内以 0.122 fM 的 LOD 和 0.441 fM 的 LOQ 定量方式特异性检测白细胞毒素 HlgA 和 HlgAB。该传感器用含有 HlgAB 的人血清作为模拟临床样本进行了挑战。经过稀释以降低非特异性结合后,它选择性地检测到毒素,其检测范围和表观解离常数与缓冲液相似。该生物传感器具有快速检测 HlgAB 的显著灵敏度,并且具有作为基础研究和临床应用工具的潜力,尽管该传感器不能区分 HlgAB 和 LukED,因为两者都有相同的受体。