Department of Respiratory and Critical Care Medicine, Maoming People's Hospital, Maoming, China.
Center of Respiratory Research, Maoming People's Hospital, Maoming, China.
Cancer Invest. 2024 Aug;42(7):544-558. doi: 10.1080/07357907.2024.2356002. Epub 2024 Jul 15.
Typical Pulmonary Carcinoid (TPC) is defined by its slow growth, frequently necessitating surgical intervention. Despite this, the long-term outcomes following tumor resection are not well understood. This study examined the factors impacting Overall Survival (OS) in patients with TPC, leveraging data from the Surveillance, Epidemiology, and End Results database spanning from 2000 to 2018. We employed Lasso-Cox analysis to identify prognostic features and developed various models using Random Forest, XGBoost, and Cox regression algorithms. Subsequently, we assessed model performance using metrics such as Area Under the Curve (AUC), calibration plot, Brier score, and Decision Curve Analysis (DCA). Among the 2687 patients, we identified five clinical features significantly affecting OS. Notably, the Random Forest model exhibited strong performance, achieving 5- and 7-year AUC values of 0.744/0.757 in the training set and 0.715/0.740 in the validation set, respectively, outperforming other models. Additionally, we developed a web-based platform aimed at facilitating easy access to the model. This study presents a machine learning model and a web-based support system for healthcare professionals, assisting in personalized treatment decisions for patients with TPC post-tumor resection.
典型肺类癌(TPC)的生长缓慢,通常需要手术干预。尽管如此,肿瘤切除后的长期预后仍不清楚。本研究利用 2000 年至 2018 年监测、流行病学和最终结果数据库的数据,研究了影响 TPC 患者总生存(OS)的因素。我们采用 Lasso-Cox 分析来识别预后特征,并使用随机森林、XGBoost 和 Cox 回归算法开发了各种模型。随后,我们使用曲线下面积(AUC)、校准图、Brier 评分和决策曲线分析(DCA)等指标评估模型性能。在 2687 名患者中,我们确定了五个显著影响 OS 的临床特征。值得注意的是,随机森林模型表现出很强的性能,在训练集中的 5 年和 7 年 AUC 值分别为 0.744/0.757,在验证集中分别为 0.715/0.740,优于其他模型。此外,我们还开发了一个基于网络的平台,旨在方便模型的访问。本研究提出了一种机器学习模型和一个基于网络的支持系统,为 TPC 肿瘤切除后的患者提供了个性化治疗决策的支持。