Suppr超能文献

运用机器学习预测接受手术切除的肺大细胞神经内分泌癌患者的生存结局。

Implementing machine learning to predict survival outcomes in patients with resected pulmonary large cell neuroendocrine carcinoma.

机构信息

Department of Respiratory and Critical Care Medicine, Maoming People's Hospital, Maoming, China.

Center of Respiratory Research, Maoming People's Hospital, Maoming, China.

出版信息

Expert Rev Anticancer Ther. 2024 Oct;24(10):1041-1053. doi: 10.1080/14737140.2024.2401446. Epub 2024 Sep 9.

Abstract

BACKGROUND

The post-surgical prognosis for Pulmonary Large Cell Neuroendocrine Carcinoma (PLCNEC) patients remains largely unexplored. Developing a precise prognostic model is vital to assist clinicians in patient counseling and creating effective treatment strategies.

RESEARCH DESIGN AND METHODS

This retrospective study utilized the Surveillance, Epidemiology, and End Results database from 2000 to 2018 to identify key prognostic features for Overall Survival (OS) in PLCNEC using Boruta analysis. Predictive models employing XGBoost, Random Forest, Decision Trees, Elastic Net, and Support Vector Machine were constructed and evaluated based on Area Under the Receiver Operating Characteristic Curve (AUC), calibration plots, Brier scores, and Decision Curve Analysis (DCA).

RESULTS

Analysis of 604 patients revealed eight significant predictors of OS. The Random Forest model outperformed others, with AUC values of 0.765 and 0.756 for 3 and 5-year survival predictions in the training set, and 0.739 and 0.706 in the validation set, respectively. Its superior validation cohort performance was confirmed by its AUC, calibration, and DCA metrics.

CONCLUSIONS

This study introduces a novel machine learning-based prognostic model with a supportive web-based platform, offering valuable tools for healthcare professionals. These advancements facilitate more personalized clinical decision-making for PLCNEC patients following primary tumor resection.

摘要

背景

肺大细胞神经内分泌癌(PLCNEC)患者的术后预后在很大程度上仍未得到探索。开发精确的预后模型对于协助临床医生进行患者咨询和制定有效的治疗策略至关重要。

研究设计与方法

本回顾性研究利用 2000 年至 2018 年的监测、流行病学和最终结果数据库,通过 Boruta 分析确定整体生存(OS)中用于 PLCNEC 的关键预后特征。使用 XGBoost、随机森林、决策树、弹性网络和支持向量机构建并评估了预测模型,评估指标包括接收者操作特征曲线下的面积(AUC)、校准图、Brier 评分和决策曲线分析(DCA)。

结果

对 604 例患者的分析显示,有 8 个 OS 的显著预测因子。随机森林模型表现优于其他模型,在训练集中,其 3 年和 5 年生存率预测的 AUC 值分别为 0.765 和 0.756,在验证集中,其 AUC 值分别为 0.739 和 0.706。其 AUC、校准和 DCA 指标均证实了其在验证队列中的卓越性能。

结论

本研究引入了一种新的基于机器学习的预后模型,并提供了一个支持网络的平台,为医疗保健专业人员提供了有价值的工具。这些进展为原发性肿瘤切除后 PLCNEC 患者的临床决策提供了更个性化的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验