Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
Methods Mol Biol. 2024;2805:153-160. doi: 10.1007/978-1-0716-3854-5_10.
Microfluidic devices support developmental and mechanobiology studies by enabling the precise control of electrical, chemical, and mechanical stimuli at the microscale. Here, we describe the fabrication of customizable microfluidic devices and demonstrate their efficacy in applying mechanical loads to micro-organs and whole organisms, such as Drosophila embryos. The fabrication technique consists in the use of xurography to define channels and chambers using thin layers of thermoplastics and glass. The superposition of layers followed by thermal lamination produces robust and reproducible devices that are easily adapted for a variety of experiments. The integration of deformable layers and glass in these devices facilitates the imaging of cellular and molecular dynamics in biological specimens under mechanical loads. The method is highly adaptable for studies in mechanobiology.
微流控设备通过在微尺度上精确控制电、化学和机械刺激,支持发育和机械生物学研究。在这里,我们描述了可定制微流控设备的制造,并展示了它们在向微器官和整个生物体(如果蝇胚胎)施加机械负荷方面的功效。制造技术包括使用光刻技术使用薄的热塑性塑料和玻璃层来定义通道和腔室。层的叠加和热层压产生坚固且可重复的设备,这些设备易于适应各种实验。在这些设备中集成可变形层和玻璃,便于在机械负荷下对生物样本中的细胞和分子动力学进行成像。该方法非常适合机械生物学研究。