Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
Lab Chip. 2017 Jun 27;17(13):2303-2322. doi: 10.1039/c7lc00345e.
We present a microfluidic chip for immobilizing Drosophila melanogaster larvae for high resolution in vivo imaging. The chip creates a low-temperature micro-environment that anaesthetizes and immobilizes the larva in under 3 minutes. We characterized the temperature distribution within the chip and analyzed the resulting larval body movement using high resolution fluorescence imaging. Our results indicate that the proposed method minimizes submicron movements of internal organs and tissue without affecting the larva physiology. It can be used to continuously immobilize larvae for short periods of time (minutes) or for longer periods (several hours) if used intermittently. The same chip can be used to accommodate and immobilize arvae across all developmental stages (1st instar to late 3rd instar), and loading larvae onto the chip does not require any specialized skills. To demonstrate the usability of the chip, we observed mitochondrial trafficking in neurons from the cell bodies to the axon terminals along with mitochondrial fusion and neuro-synaptic growth through time in intact larvae. Besides studying sub-cellular processes and cellular development, we envision the use of on chip cryo-anesthesia in a wide variety of biological in vivo imaging applications, including observing organ development of the salivary glands, fat bodies and body-wall muscles.
我们提出了一种用于固定黑腹果蝇幼虫的微流控芯片,以实现高分辨率的活体成像。该芯片创建了一个低温微环境,可在 3 分钟内使幼虫麻醉并固定。我们对芯片内的温度分布进行了表征,并使用高分辨率荧光成像分析了由此产生的幼虫身体运动。我们的结果表明,所提出的方法可以最小化内部器官和组织的亚微米运动,而不会影响幼虫的生理机能。它可以用于短时间(数分钟)或长时间(数小时)连续固定幼虫,如果间歇性使用的话。同一片芯片可以用于容纳和固定所有发育阶段(1 龄到 3 龄晚期)的幼虫,而且将幼虫加载到芯片上不需要任何特殊技能。为了证明芯片的可用性,我们在完整的幼虫中观察了神经元中线粒体从细胞体到轴突末梢的运输,以及线粒体融合和神经突触生长的时间过程。除了研究亚细胞过程和细胞发育外,我们设想在各种生物活体成像应用中使用芯片低温麻醉,包括观察唾腺、脂肪体和体壁肌肉的器官发育。