Taha Kamal
IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):1965-1986. doi: 10.1109/TCBB.2024.3427381. Epub 2024 Dec 10.
This review article delves deeply into the various machine learning (ML) methods and algorithms employed in discerning protein functions. Each method discussed is assessed for its efficacy, limitations, potential improvements, and future prospects. We present an innovative hierarchical classification system that arranges algorithms into intricate categories and unique techniques. This taxonomy is based on a tri-level hierarchy, starting with the methodology category and narrowing down to specific techniques. Such a framework allows for a structured and comprehensive classification of algorithms, assisting researchers in understanding the interrelationships among diverse algorithms and techniques. The study incorporates both empirical and experimental evaluations to differentiate between the techniques. The empirical evaluation ranks the techniques based on four criteria. The experimental assessments rank: (1) individual techniques under the same methodology sub-category, (2) different sub-categories within the same category, and (3) the broad categories themselves. Integrating the innovative methodological classification, empirical findings, and experimental assessments, the article offers a well-rounded understanding of ML strategies in protein function identification. The paper also explores techniques for multi-task and multi-label detection of protein functions, in addition to focusing on single-task methods. Moreover, the paper sheds light on the future avenues of ML in protein function determination.
这篇综述文章深入探讨了用于识别蛋白质功能的各种机器学习(ML)方法和算法。对所讨论的每种方法的功效、局限性、潜在改进和未来前景进行了评估。我们提出了一种创新的层次分类系统,将算法排列成复杂的类别和独特的技术。这种分类法基于三级层次结构,从方法类别开始,逐步细化到具体技术。这样的框架允许对算法进行结构化和全面的分类,帮助研究人员理解不同算法和技术之间的相互关系。该研究纳入了实证和实验评估,以区分不同的技术。实证评估基于四个标准对技术进行排名。实验评估则对以下方面进行排名:(1)同一方法子类别下的各个技术,(2)同一类别内的不同子类别,以及(3)各个大类本身。结合创新的方法分类、实证结果和实验评估,本文对蛋白质功能识别中的ML策略提供了全面的理解。除了关注单任务方法外,本文还探讨了蛋白质功能的多任务和多标签检测技术。此外,本文还阐明了ML在蛋白质功能测定方面的未来发展方向。