Suppr超能文献

使用深度扩散语言模型进行无机化合物的生成式设计。

Generative Design of Inorganic Compounds Using Deep Diffusion Language Models.

作者信息

Dong Rongzhi, Fu Nihang, Siriwardane Edirisuriya M D, Hu Jianjun

机构信息

Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina 29201, United States.

Department of Physics, University of Colombo, Colombo 00300, Sri Lanka.

出版信息

J Phys Chem A. 2024 Jul 25;128(29):5980-5989. doi: 10.1021/acs.jpca.4c00083. Epub 2024 Jul 15.

Abstract

Due to the vast chemical space, discovering materials with a specific function is challenging. Chemical formulas are obligated to conform to a set of exacting criteria, such as charge neutrality, balanced electronegativity, synthesizability, and mechanical stability. In response to this formidable task, we introduce a deep-learning-based generative model for material composition and structure design by learning and exploiting explicit and implicit chemical knowledge. Our pipeline first uses deep diffusion language models as the generator of compositions and then applies a template-based crystal structure prediction algorithm to predict their corresponding structures, which is then followed by structure relaxation using a universal graph neural network-based potential. Density functional theory (DFT) calculations of the formation energies and energy-above-the-hull analysis are used to validate new structures generated through our pipeline. Based on the DFT calculation results, six new materials, including TiHfO, TaNbP, YMoN, TaReO, HfTiO, and HfMnO, with formation energy less than zero have been found. Remarkably, among these, four materials, namely, TiHfO, TaNbP, YMoN, and TaReO, exhibit an e-above-hull energy of less than 0.3 eV. These findings have proved the effectiveness of our approach.

摘要

由于化学空间广阔,发现具有特定功能的材料具有挑战性。化学式必须符合一系列严格的标准,如电荷中性、电负性平衡、可合成性和机械稳定性。为应对这一艰巨任务,我们通过学习和利用显式和隐式化学知识,引入了一种基于深度学习的生成模型用于材料成分和结构设计。我们的流程首先使用深度扩散语言模型作为成分生成器,然后应用基于模板的晶体结构预测算法来预测其相应结构,接着使用基于通用图神经网络的势进行结构弛豫。通过形成能的密度泛函理论(DFT)计算和高于凸包能量分析来验证通过我们的流程生成的新结构。基于DFT计算结果,发现了六种形成能小于零的新材料,包括TiHfO、TaNbP、YMoN、TaReO、HfTiO和HfMnO。值得注意的是,其中四种材料,即TiHfO、TaNbP、YMoN和TaReO,其高于凸包能量小于0.3 eV。这些发现证明了我们方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验