Ye Weike, Lei Xiangyun, Aykol Muratahan, Montoya Joseph H
Toyota Research Institute, Energy and Materials Division, Los Altos, 94440, USA.
Sci Data. 2022 Jun 14;9(1):302. doi: 10.1038/s41597-022-01438-8.
We report a dataset of 96640 crystal structures discovered and computed using our previously published autonomous, density functional theory (DFT) based, active-learning workflow named CAMD (Computational Autonomy for Materials Discovery). Of these, 894 are within 1 meV/atom of the convex hull and 26826 are within 200 meV/atom of the convex hull. The dataset contains DFT-optimized pymatgen crystal structure objects, DFT-computed formation energies and phase stability calculations from the convex hull. It contains a variety of spacegroups and symmetries derived from crystal prototypes derived from known experimental compounds, and was generated from active learning campaigns of various chemical systems. This dataset can be used to benchmark future active-learning or generative efforts for structure prediction, to seed new efforts of experimental crystal structure discovery, or to construct new models of structure-property relationships.
我们报告了一个包含96640个晶体结构的数据集,这些结构是使用我们之前发表的基于自主密度泛函理论(DFT)的主动学习工作流程CAMD(材料发现计算自主性)发现并计算得出的。其中,894个位于凸包的1毫电子伏特/原子范围内,26826个位于凸包的200毫电子伏特/原子范围内。该数据集包含经过DFT优化的pymatgen晶体结构对象、DFT计算的形成能以及来自凸包的相稳定性计算。它包含从已知实验化合物衍生的晶体原型中获得的各种空间群和对称性,并且是通过各种化学系统的主动学习活动生成的。这个数据集可用于对未来结构预测的主动学习或生成工作进行基准测试,为实验晶体结构发现的新工作提供种子,或构建结构-性质关系的新模型。