Suppr超能文献

使用图神经网络预测已知和假设晶体的能量与稳定性。

Predicting energy and stability of known and hypothetical crystals using graph neural network.

作者信息

Pandey Shubham, Qu Jiaxing, Stevanović Vladan, St John Peter, Gorai Prashun

机构信息

Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA.

Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA.

出版信息

Patterns (N Y). 2021 Sep 30;2(11):100361. doi: 10.1016/j.patter.2021.100361. eCollection 2021 Nov 12.

Abstract

The discovery of new inorganic materials in unexplored chemical spaces necessitates calculating total energy quickly and with sufficient accuracy. Machine learning models that provide such a capability for both ground-state (GS) and higher-energy structures would be instrumental in accelerated screening. Here, we demonstrate the importance of a balanced training dataset of GS and higher-energy structures to accurately predict total energies using a generic graph neural network architecture. Using 16,500 density functional theory calculations from the National Renewable Energy Laboratory (NREL) Materials Database and 11,000 calculations for hypothetical structures as our training database, we demonstrate that our model satisfactorily ranks the structures in the correct order of total energies for a given composition. Furthermore, we present a thorough error analysis to explain failure modes of the model, including both prediction outliers and occasional inconsistencies in the training data. By examining intermediate layers of the model, we analyze how the model represents learned structures and properties.

摘要

在未探索的化学空间中发现新的无机材料需要快速且准确地计算总能量。能够为基态(GS)和高能结构提供这种能力的机器学习模型将有助于加速筛选。在这里,我们展示了使用通用图神经网络架构时,GS和高能结构的平衡训练数据集对于准确预测总能量的重要性。使用来自美国国家可再生能源实验室(NREL)材料数据库的16500个密度泛函理论计算结果以及11000个假设结构的计算结果作为我们的训练数据库,我们证明了我们的模型能够令人满意地按照给定组成的总能量正确顺序对结构进行排序。此外,我们进行了全面的误差分析,以解释模型的失败模式,包括预测异常值和训练数据中偶尔出现的不一致性。通过检查模型的中间层,我们分析了模型如何表示学习到的结构和属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b61/8600245/add818c31f3b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验