Suppr超能文献

电子健康干预措施在提高心血管疾病患者药物依从性方面的有效性:系统评价和荟萃分析。

Effectiveness of eHealth Interventions in Improving Medication Adherence Among Patients With Cardiovascular Disease: Systematic Review and Meta-Analysis.

机构信息

School of Nursing, Capital Medical University, Beijing, China.

出版信息

J Med Internet Res. 2024 Jul 15;26:e58013. doi: 10.2196/58013.

Abstract

BACKGROUND

Nonadherence to medication among patients with cardiovascular diseases undermines the desired therapeutic outcomes. eHealth interventions emerge as promising strategies to effectively tackle this issue.

OBJECTIVE

The aim of this study was to conduct a network meta-analysis (NMA) to compare and rank the efficacy of various eHealth interventions in improving medication adherence among patients with cardiovascular diseases (CVDs).

METHODS

A systematic search strategy was conducted in PubMed, Embase, Web of Science, Cochrane, China National Knowledge Infrastructure Library (CNKI), China Science and Technology Journal Database (Weipu), and WanFang databases to search for randomized controlled trials (RCTs) published from their inception on January 15, 2024. We carried out a frequentist NMA to compare the efficacy of various eHealth interventions. The quality of the literature was assessed using the risk of bias tool from the Cochrane Handbook (version 2.0), and extracted data were analyzed using Stata16.0 (StataCorp LLC) and RevMan5.4 software (Cochrane Collaboration). The certainty of evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach.

RESULTS

A total of 21 RCTs involving 3904 patients were enrolled. The NMA revealed that combined interventions (standardized mean difference [SMD] 0.89, 95% CI 0.22-1.57), telephone support (SMD 0.68, 95% CI 0.02-1.33), telemonitoring interventions (SMD 0.70, 95% CI 0.02-1.39), and mobile phone app interventions (SMD 0.65, 95% CI 0.01-1.30) were statistically superior to usual care. However, SMS compared to usual care showed no statistical difference. Notably, the combined intervention, with a surface under the cumulative ranking curve of 79.3%, appeared to be the most effective option for patients with CVDs. Regarding systolic blood pressure and diastolic blood pressure outcomes, the combined intervention also had the highest probability of being the best intervention.

CONCLUSIONS

The research indicates that the combined intervention (SMS text messaging and telephone support) has the greatest likelihood of being the most effective eHealth intervention to improve medication adherence in patients with CVDs, followed by telemonitoring, telephone support, and app interventions. The results of these network meta-analyses can provide crucial evidence-based support for health care providers to enhance patients' medication adherence. Given the differences in the design and implementation of eHealth interventions, further large-scale, well-designed multicenter trials are needed.

TRIAL REGISTRATION

INPLASY 2023120063; https://inplasy.com/inplasy-2023-12-0063/.

摘要

背景

心血管疾病患者不遵医嘱会影响预期的治疗效果。电子健康干预措施是有效解决这一问题的有前途的策略。

目的

本研究旨在进行网络荟萃分析(NMA),比较和排名各种电子健康干预措施在提高心血管疾病(CVD)患者药物依从性方面的疗效。

方法

系统检索 PubMed、Embase、Web of Science、Cochrane、中国国家知识基础设施数据库(CNKI)、中国科技期刊数据库(维普)和万方数据库,以检索 2024 年 1 月 15 日起发表的随机对照试验(RCT)。我们进行了一项频率主义 NMA 来比较各种电子健康干预措施的疗效。使用 Cochrane 手册(版本 2.0)的偏倚风险工具评估文献质量,并使用 Stata16.0(StataCorp LLC)和 RevMan5.4 软件(Cochrane 协作组织)分析提取的数据。使用推荐评估、制定与评价分级(GRADE)方法评估证据的确定性。

结果

共纳入 21 项 RCT,涉及 3904 名患者。NMA 显示,联合干预(标准化均数差 [SMD] 0.89,95%置信区间 [CI] 0.22-1.57)、电话支持(SMD 0.68,95%CI 0.02-1.33)、远程监测干预(SMD 0.70,95%CI 0.02-1.39)和移动应用程序干预(SMD 0.65,95%CI 0.01-1.30)均优于常规护理。然而,短信与常规护理相比无统计学差异。值得注意的是,综合干预,累积排序曲线下面积为 79.3%,似乎是 CVD 患者最有效的选择。关于收缩压和舒张压结果,联合干预也最有可能成为最佳干预措施。

结论

研究表明,联合干预(短信和电话支持)最有可能成为提高 CVD 患者药物依从性的最有效电子健康干预措施,其次是远程监测、电话支持和应用程序干预。这些网络荟萃分析的结果可为医疗保健提供者提供关键的循证支持,以提高患者的药物依从性。鉴于电子健康干预措施的设计和实施存在差异,需要进一步开展大规模、精心设计的多中心试验。

试验注册

INPLASY 2023120063; https://inplasy.com/inplasy-2023-12-0063/。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b26/11287104/585a20dcb2f9/jmir_v26i1e58013_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验