Feng Longsheng, Huang Sijia, Heo Tae Wook, Biener Juergen
Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
Laboratory for Energy Applications for the Future (LEAF), Lawrence Livermore National Laboratory, Livermore, California 94550, United States.
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):38442-38457. doi: 10.1021/acsami.4c03011. Epub 2024 Jul 15.
Unraveling the microstructure-property relationship is crucial for improving material performance and advancing the design of next-generation structural and functional materials. However, this is inherently challenging because it requires both the comprehensive quantification of microstructural features and the accurate assessment of corresponding properties. To meet these requirements, we developed an efficient and comprehensive integrated modeling framework, using polymeric porous materials as a representative model system. Our framework generates microstructures using a physics-based phase-field model, characterizes them using various average and localized microstructural features, and evaluates microstructure-aware properties, such as effective diffusivity, using an efficient Fourier-based perturbation numerical scheme. Additionally, the framework incorporates machine learning methods to decipher the intricate microstructure-property relationships. Our findings indicate that the connectivity of phase channels is the most critical microstructural descriptor for determining effective diffusivity, followed by the domain shape represented by curvature distribution, while the domain size has a minor impact. This comprehensive approach offers a novel framework for assessing microstructure-property relationships in polymer-based porous materials, paving the way for the development of advanced materials for diverse applications.
揭示微观结构与性能之间的关系对于提高材料性能和推进下一代结构及功能材料的设计至关重要。然而,这本质上具有挑战性,因为它既需要对微观结构特征进行全面量化,又需要对相应性能进行准确评估。为满足这些要求,我们以聚合物多孔材料作为代表性模型系统,开发了一个高效且全面的集成建模框架。我们的框架使用基于物理的相场模型生成微观结构,利用各种平均和局部微观结构特征对其进行表征,并使用基于傅里叶的高效微扰数值方案评估微观结构感知性能,如有效扩散率。此外,该框架还纳入机器学习方法来解读复杂的微观结构与性能关系。我们的研究结果表明,相通道的连通性是决定有效扩散率的最关键微观结构描述符,其次是由曲率分布表示的域形状,而域大小的影响较小。这种综合方法为评估聚合物基多孔材料中的微观结构与性能关系提供了一个新颖的框架,为开发用于各种应用的先进材料铺平了道路。