Suppr超能文献

在用于非均质含能材料的设计型材料框架中,利用深度学习生成合成微观结构。

Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials.

作者信息

Chun Sehyun, Roy Sidhartha, Nguyen Yen Thi, Choi Joseph B, Udaykumar H S, Baek Stephen S

机构信息

Department of Industrial and Systems Engineering, University of Iowa, Iowa City, IA, 52242, USA.

Department of Mechanical Engineering, University of Iowa, Iowa City, IA, 52242, USA.

出版信息

Sci Rep. 2020 Aug 6;10(1):13307. doi: 10.1038/s41598-020-70149-0.

Abstract

The sensitivity of heterogeneous energetic (HE) materials (propellants, explosives, and pyrotechnics) is critically dependent on their microstructure. Initiation of chemical reactions occurs at hot spots due to energy localization at sites of porosities and other defects. Emerging multi-scale predictive models of HE response to loads account for the physics at the meso-scale, i.e. at the scale of statistically representative clusters of particles and other features in the microstructure. Meso-scale physics is infused in machine-learned closure models informed by resolved meso-scale simulations. Since microstructures are stochastic, ensembles of meso-scale simulations are required to quantify hot spot ignition and growth and to develop models for microstructure-dependent energy deposition rates. We propose utilizing generative adversarial networks (GAN) to spawn ensembles of synthetic heterogeneous energetic material microstructures. The method generates qualitatively and quantitatively realistic microstructures by learning from images of HE microstructures. We show that the proposed GAN method also permits the generation of new morphologies, where the porosity distribution can be controlled and spatially manipulated. Such control paves the way for the design of novel microstructures to engineer HE materials for targeted performance in a materials-by-design framework.

摘要

多相含能材料(推进剂、炸药和烟火剂)的敏感性严重依赖于其微观结构。由于能量在孔隙和其他缺陷部位的局部化,化学反应在热点处引发。新兴的多相含能材料对载荷响应的预测模型考虑了细观尺度的物理过程,即微观结构中具有统计代表性的颗粒簇和其他特征的尺度。细观尺度的物理过程被融入到基于解析细观尺度模拟的机器学习封闭模型中。由于微观结构是随机的,需要进行细观尺度模拟的集合来量化热点点火和生长,并开发与微观结构相关的能量沉积速率模型。我们建议利用生成对抗网络(GAN)来生成合成多相含能材料微观结构的集合。该方法通过从含能材料微观结构图像中学习,生成定性和定量上逼真的微观结构。我们表明,所提出的GAN方法还允许生成新的形态,其中孔隙率分布可以被控制和空间操纵。这种控制为设计新型微观结构铺平了道路,以便在材料设计框架中设计具有目标性能的含能材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c319/7413342/5fae6c8ecb4c/41598_2020_70149_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验