Suppr超能文献

组装共培养体系以制备高度纯的诱导多能干细胞衍生的晚期成熟神经元。

Assembling a Coculture System to Prepare Highly Pure Induced Pluripotent Stem Cell-Derived Neurons at Late Maturation Stages.

机构信息

Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932.

Department of Chemistry, University of Louisiana at Lafayette, Lafayette Louisiana 70504.

出版信息

eNeuro. 2024 Jul 30;11(7). doi: 10.1523/ENEURO.0165-24.2024. Print 2024 Jul.

Abstract

Generation of human induced pluripotent stem cell (hiPSC)-derived motor neurons (MNs) offers an unprecedented approach to modeling movement disorders such as dystonia and amyotrophic lateral sclerosis. However, achieving survival poses a significant challenge when culturing induced MNs, especially when aiming to reach late maturation stages. Utilizing hiPSC-derived motor neurons and primary mouse astrocytes, we assembled two types of coculture systems: direct coculturing of neurons with astrocytes and indirect coculture using culture inserts that physically separate neurons and astrocytes. Both systems significantly enhance neuron survival. Compared with these two systems, no significant differences in neurodevelopment, maturation, and survival within 3 weeks, allowing to prepare neurons at maturation stages. Using the indirect coculture system, we obtained highly pure MNs at the late mature stage from hiPSCs. Transcriptomic studies of hiPSC-derived MNs showed a typical neurodevelopmental switch in gene expression from the early immature stage to late maturation stages. Mature genes associated with neurodevelopment and synaptogenesis are highly enriched in MNs at late stages, demonstrating that these neurons achieve maturation. This study introduces a novel tool for the preparation of highly pure hiPSC-derived neurons, enabling the determination of neurological disease pathogenesis in neurons at late disease onset stages through biochemical approaches, which typically necessitate highly pure neurons. This advancement is particularly significant in modeling age-related neurodegeneration.

摘要

生成人诱导多能干细胞(hiPSC)衍生的运动神经元(MNs)为模拟运动障碍(如肌张力障碍和肌萎缩性侧索硬化症)提供了一种前所未有的方法。然而,在培养诱导 MNs 时,实现存活是一个重大挑战,特别是在达到晚期成熟阶段时。利用 hiPSC 衍生的运动神经元和原代小鼠星形胶质细胞,我们组装了两种共培养系统:神经元与星形胶质细胞的直接共培养和使用培养插入物将神经元和星形胶质细胞物理分离的间接共培养。这两种系统都显著提高了神经元的存活率。与这两种系统相比,在 3 周内神经发育、成熟和存活没有显著差异,允许在成熟阶段制备神经元。使用间接共培养系统,我们从 hiPSCs 获得了晚期成熟的高度纯 MNs。hiPSC 衍生 MNs 的转录组研究显示,基因表达从早期未成熟阶段到晚期成熟阶段发生了典型的神经发育转变。与神经发育和突触发生相关的成熟基因在晚期 MNs 中高度富集,表明这些神经元达到了成熟。这项研究介绍了一种新型工具,用于制备高度纯的 hiPSC 衍生神经元,通过生化方法确定神经元在晚期发病阶段的神经疾病发病机制,这通常需要高度纯的神经元。这项进展在模拟与年龄相关的神经退行性变方面尤为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6cd/11289586/d46c69b1df7b/eneuro-11-ENEURO.0165-24.2024-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验