Suppr超能文献

利用光子集成电路实现高效输入/输出迭代矩阵求逆

I/O-efficient iterative matrix inversion with photonic integrated circuits.

作者信息

Chen Minjia, Wang Yizhi, Yao Chunhui, Wonfor Adrian, Yang Shuai, Penty Richard, Cheng Qixiang

机构信息

Centre for Photonic Systems, Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.

GlitterinTech Limited, Xuzhou, 221000, China.

出版信息

Nat Commun. 2024 Jul 15;15(1):5926. doi: 10.1038/s41467-024-50302-3.

Abstract

Photonic integrated circuits have been extensively explored for optical processing with the aim of breaking the speed and energy efficiency bottlenecks of digital electronics. However, the input/output (IO) bottleneck remains one of the key barriers. Here we report a photonic iterative processor (PIP) for matrix-inversion-intensive applications. The direct reuse of inputted data in the optical domain unlocks the potential to break the IO bottleneck. We demonstrate notable IO advantages with a lossless PIP for real-valued matrix inversion and integral-differential equation solving, as well as a coherent PIP with optical loops integrated on-chip, enabling complex-valued computation and a net inversion time of 1.2 ns. Furthermore, we estimate at least an order of magnitude enhancement in IO efficiency of a PIP over photonic single-pass processors and the state-of-the-art electronic processors for reservoir training tasks and multiple-input and multiple-output (MIMO) precoding tasks, indicating the huge potential of PIP technology in practical applications.

摘要

为了突破数字电子技术的速度和能源效率瓶颈,人们对光子集成电路进行了广泛的探索,以实现光学处理。然而,输入/输出(IO)瓶颈仍然是关键障碍之一。在此,我们报道了一种用于矩阵求逆密集型应用的光子迭代处理器(PIP)。在光域中直接复用输入数据,为突破IO瓶颈带来了可能。我们展示了一种用于实值矩阵求逆和积分 - 微分方程求解的无损PIP以及一种片上集成光学环路的相干PIP的显著IO优势,后者能够进行复值计算且净求逆时间为1.2纳秒。此外,我们估计,对于储层训练任务和多输入多输出(MIMO)预编码任务,PIP的IO效率比光子单通道处理器和最先进的电子处理器至少提高一个数量级,这表明PIP技术在实际应用中具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c13/11251023/2dfac7754410/41467_2024_50302_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验