Tang Guo-Jing, Chen Xiao-Dong, Sun Lu, Guo Chao-Heng, Li Meng-Yu, Tian Zhong-Tao, Chen Hou-Hong, Wang Hong-Wei, Sun Qi-Yao, Pan Ying-Di, He Xin-Tao, Su Yi-Kai, Dong Jian-Wen
School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China.
State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Light Sci Appl. 2024 Jul 16;13(1):166. doi: 10.1038/s41377-024-01512-3.
3-dB couplers, which are commonly used in photonic integrated circuits for on-chip information processing, precision measurement, and quantum computing, face challenges in achieving robust performance due to their limited 3-dB bandwidths and sensitivity to fabrication errors. To address this, we introduce topological physics to nanophotonics, developing a framework for topological 3-dB couplers. These couplers exhibit broad working wavelength range and robustness against fabrication dimensional errors. By leveraging valley-Hall topology and mirror symmetry, the photonic-crystal-slab couplers achieve ideal 3-dB splitting characterized by a wavelength-insensitive scattering matrix. Tolerance analysis confirms the superiority on broad bandwidth of 48 nm and robust splitting against dimensional errors of 20 nm. We further propose a topological interferometer for on-chip distance measurement, which also exhibits robustness against dimensional errors. This extension of topological principles to the fields of interferometers, may open up new possibilities for constructing robust wavelength division multiplexing, temperature-drift-insensitive sensing, and optical coherence tomography applications.
3分贝耦合器常用于光子集成电路中进行片上信息处理、精密测量和量子计算,但由于其有限的3分贝带宽以及对制造误差的敏感性,在实现稳健性能方面面临挑战。为了解决这一问题,我们将拓扑物理引入纳米光子学,开发了一种拓扑3分贝耦合器框架。这些耦合器具有宽广的工作波长范围,并且对制造尺寸误差具有鲁棒性。通过利用谷霍尔拓扑和镜面对称性,光子晶体平板耦合器实现了理想的3分贝分光,其散射矩阵对波长不敏感。容差分析证实了其在48纳米宽频带上的优越性以及对20纳米尺寸误差的稳健分光。我们还提出了一种用于片上距离测量的拓扑干涉仪,它对尺寸误差也具有鲁棒性。将拓扑原理扩展到干涉仪领域,可能为构建稳健的波分复用、温度漂移不敏感传感和光学相干断层扫描应用开辟新的可能性。