Suppr超能文献

肠道微生物因素可预测多发性硬化症小鼠模型的疾病严重程度。

Gut microbial factors predict disease severity in a mouse model of multiple sclerosis.

机构信息

Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.

Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.

出版信息

Nat Microbiol. 2024 Sep;9(9):2244-2261. doi: 10.1038/s41564-024-01761-3. Epub 2024 Jul 15.

Abstract

Gut bacteria are linked to neurodegenerative diseases but the risk factors beyond microbiota composition are limited. Here we used a pre-clinical model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), to identify microbial risk factors. Mice with different genotypes and complex microbiotas or six combinations of a synthetic human microbiota were analysed, resulting in varying probabilities of severe neuroinflammation. However, the presence or relative abundances of suspected microbial risk factors failed to predict disease severity. Akkermansia muciniphila, often associated with MS, exhibited variable associations with EAE severity depending on the background microbiota. Significant inter-individual disease course variations were observed among mice harbouring the same microbiota. Evaluation of microbial functional characteristics and host immune responses demonstrated that the immunoglobulin A coating index of certain bacteria before disease onset is a robust individualized predictor of disease development. Our study highlights the need to consider microbial community networks and host-specific bidirectional interactions when aiming to predict severity of neuroinflammation.

摘要

肠道细菌与神经退行性疾病有关,但除了微生物群落组成之外,风险因素有限。在这里,我们使用多发性硬化症 (MS)、实验性自身免疫性脑脊髓炎 (EAE) 的临床前模型来确定微生物风险因素。分析了具有不同基因型和复杂微生物群或六种合成人类微生物群组合的小鼠,导致严重神经炎症的可能性不同。然而,可疑微生物风险因素的存在或相对丰度未能预测疾病严重程度。阿克曼氏菌(Akkermansia muciniphila)通常与 MS 相关,其与 EAE 严重程度的关联因背景微生物群而异。在携带相同微生物群的小鼠中观察到显著的个体间疾病过程变化。对微生物功能特征和宿主免疫反应的评估表明,疾病发作前某些细菌的免疫球蛋白 A 涂层指数是疾病发展的可靠个体化预测指标。我们的研究强调,当旨在预测神经炎症的严重程度时,需要考虑微生物群落网络和宿主特异性双向相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e61d/11371644/356dece06bd6/41564_2024_1761_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验