Suppr超能文献

减轻图像处理变化对肿瘤 [F]-FDG-PET 放射组学特征稳健性的影响。

Mitigating the impact of image processing variations on tumour [F]-FDG-PET radiomic feature robustness.

机构信息

Department of Radiology, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.

Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.

出版信息

Sci Rep. 2024 Jul 15;14(1):16294. doi: 10.1038/s41598-024-67239-8.

Abstract

Radiomics analysis of [F]-fluorodeoxyglucose ([F]-FDG) PET images could be leveraged for personalised cancer medicine. However, the inherent sensitivity of radiomic features to intensity discretisation and voxel interpolation complicates its clinical translation. In this work, we evaluated the robustness of tumour [F]-FDG-PET radiomic features to 174 different variations in intensity resolution or voxel size, and determined whether implementing parameter range conditions or dependency corrections could improve their robustness. Using 485 patient images spanning three cancer types: non-small cell lung cancer (NSCLC), melanoma, and lymphoma, we observed features were more sensitive to intensity discretisation than voxel interpolation, especially texture features. In most of our investigations, the majority of non-robust features could be made robust by applying parameter range conditions. Correctable features, which were generally fewer than conditionally robust, showed systematic dependence on bin configuration or voxel size that could be minimised by applying corrections based on simple mathematical equations. Melanoma images exhibited limited robustness and correctability relative to NSCLC and lymphoma. Our study provides an in-depth characterisation of the sensitivity of [F]-FDG-PET features to image processing variations and reinforces the need for careful selection of imaging biomarkers prior to any clinical application.

摘要

基于[F]-氟脱氧葡萄糖 ([F]-FDG) PET 图像的放射组学分析可用于个性化癌症治疗。然而,放射组学特征对强度离散化和体素插值的固有敏感性使得其临床转化变得复杂。在这项工作中,我们评估了肿瘤 [F]-FDG-PET 放射组学特征对 174 种不同强度分辨率或体素大小变化的稳健性,并确定实施参数范围条件或依赖性校正是否可以提高其稳健性。使用跨越三种癌症类型(非小细胞肺癌 [NSCLC]、黑色素瘤和淋巴瘤)的 485 个患者图像,我们观察到特征对强度离散化比体素插值更敏感,特别是纹理特征。在我们的大多数研究中,通过应用参数范围条件,可以使大多数非稳健特征变得稳健。可校正特征通常少于条件稳健特征,表现出与 bin 配置或体素大小的系统依赖性,通过应用基于简单数学方程的校正可以最小化这种依赖性。与 NSCLC 和淋巴瘤相比,黑色素瘤图像的稳健性和可校正性有限。我们的研究深入描述了 [F]-FDG-PET 特征对图像处理变化的敏感性,并强调在任何临床应用之前,需要仔细选择成像生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验