Suppr超能文献

基于 F-FDG PET 成像的放射组学分析的特征优化提取。

Optimized Feature Extraction for Radiomics Analysis of F-FDG PET Imaging.

机构信息

QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; and

QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; and.

出版信息

J Nucl Med. 2019 Jun;60(6):864-872. doi: 10.2967/jnumed.118.217612. Epub 2018 Nov 2.

Abstract

Radiomics analysis of F-FDG PET/CT images promises well for an improved in vivo disease characterization. To date, several studies have reported significant variations in textural features due to differences in patient preparation, imaging protocols, lesion delineation, and feature extraction. Our objective was to study variations in features before a radiomics analysis of F-FDG PET data and to identify those feature extraction and imaging protocol parameters that minimize radiomic feature variations across PET imaging systems. A whole-body National Electrical Manufacturers Association image-quality phantom was imaged with 13 PET/CT systems at 12 different sites following local protocols. We selected 37 radiomic features related to the 4 largest spheres (17-37 mm) in the phantom. On the basis of a combined analysis of voxel size, bin size, and lesion volume changes, feature and imaging system ranks were established. A 1-way ANOVA was performed over voxel size, bin size, and lesion volume subgroups to identify the dependency and the trend change in feature variations across these parameters. Feature ranking revealed that the gray-level cooccurrence matrix and shape features are the least sensitive to PET imaging system variations. Imaging system ranking illustrated that the use of point-spread function, small voxel sizes, and narrow gaussian postfiltering helped minimize feature variations. ANOVA subgroup analysis indicated that variations in each of the 37 features and for a given voxel size and bin size can be minimized. Our results provide guidance to selecting optimized features from F-FDG PET/CT studies. We were able to demonstrate that feature variations can be minimized for selected image parameters and imaging systems. These results can help imaging specialists and feature engineers in increasing the quality of future radiomics studies involving PET/CT.

摘要

正电子发射断层扫描(PET)/计算机断层扫描(CT)图像的放射组学分析有望改善体内疾病特征。迄今为止,已有多项研究报告称,由于患者准备、成像方案、病变勾画和特征提取的差异,纹理特征存在显著差异。我们的目标是研究放射组学分析 F-FDG PET 数据之前的特征变化,并确定那些特征提取和成像方案参数可最大限度地减少不同 PET 成像系统之间的放射组学特征变化。采用符合美国国家标准协会(NEMA)标准的体模,在 12 个不同的地点的 13 台 PET/CT 系统上,按照当地方案进行全身成像。我们选择了体模中 4 个最大球体(17-37mm)内的 37 个放射组学特征。基于体素大小、灰度间隔和病变体积变化的综合分析,建立了特征和成像系统的排名。通过对体素大小、灰度间隔和病变体积子组进行单向方差分析,确定特征变化对这些参数的依赖性和趋势变化。特征排名显示,灰度共生矩阵和形状特征对 PET 成像系统变化最不敏感。成像系统排名表明,使用点扩散函数、小体素大小和窄高斯后滤波有助于最小化特征变化。ANOVA 子组分析表明,在每个体素大小和灰度间隔下,37 个特征中的每一个特征的变化都可以最小化。我们的结果为从 F-FDG PET/CT 研究中选择优化特征提供了指导。我们能够证明,对于选定的图像参数和成像系统,可以最小化特征变化。这些结果可以帮助影像专家和特征工程师提高未来涉及 PET/CT 的放射组学研究的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验