Suppr超能文献

基于 T1 映射放射组学的机器学习用于肥厚型心肌病表型分类。

Machine learning of native T1 mapping radiomics for classification of hypertrophic cardiomyopathy phenotypes.

机构信息

Unit of Inherited Cardiac Conditions and Sports Cardiology, 1st Department of Cardiology, National and Kapodistrian University of Athens, Athens, Greece.

CMR Unit, Mediterraneo Hospital, Attiki, Greece.

出版信息

Sci Rep. 2021 Dec 8;11(1):23596. doi: 10.1038/s41598-021-02971-z.

Abstract

We explored whether radiomic features from T1 maps by cardiac magnetic resonance (CMR) could enhance the diagnostic value of T1 mapping in distinguishing health from disease and classifying cardiac disease phenotypes. A total of 149 patients (n = 30 with no heart disease, n = 30 with LVH, n = 61 with hypertrophic cardiomyopathy (HCM) and n = 28 with cardiac amyloidosis) undergoing a CMR scan were included in this study. We extracted a total of 850 radiomic features and explored their value in disease classification. We applied principal component analysis and unsupervised clustering in exploratory analysis, and then machine learning for feature selection of the best radiomic features that maximized the diagnostic value for cardiac disease classification. The first three principal components of the T1 radiomics were distinctively correlated with cardiac disease type. Unsupervised hierarchical clustering of the population by myocardial T1 radiomics was significantly associated with myocardial disease type (chi = 55.98, p < 0.0001). After feature selection, internal validation and external testing, a model of T1 radiomics had good diagnostic performance (AUC 0.753) for multinomial classification of disease phenotype (normal vs. LVH vs. HCM vs. cardiac amyloid). A subset of six radiomic features outperformed mean native T1 values for classification between myocardial health vs. disease and HCM phenocopies (AUC of T1 vs. radiomics model, for normal: 0.549 vs. 0.888; for LVH: 0.645 vs. 0.790; for HCM 0.541 vs. 0.638; and for cardiac amyloid 0.769 vs. 0.840). We show that myocardial texture assessed by native T1 maps is linked to features of cardiac disease. Myocardial radiomic phenotyping could enhance the diagnostic yield of T1 mapping for myocardial disease detection and classification.

摘要

我们探讨了心脏磁共振(CMR)T1 映射的放射组学特征是否可以提高 T1 映射在区分健康与疾病以及分类心脏疾病表型方面的诊断价值。本研究共纳入 149 名接受 CMR 扫描的患者(无心脏病 30 例,左心室肥厚(LVH)30 例,肥厚型心肌病(HCM)61 例,心脏淀粉样变性 28 例)。我们共提取了 850 个放射组学特征,并探讨了其在疾病分类中的价值。我们在探索性分析中应用主成分分析和无监督聚类,然后应用机器学习对最佳放射组学特征进行特征选择,以最大化心脏疾病分类的诊断价值。T1 放射组学的前三个主成分与心脏疾病类型明显相关。人群的心肌 T1 放射组学无监督层次聚类与心肌疾病类型显著相关(chi  = 55.98,p  < 0.0001)。经过特征选择、内部验证和外部测试,T1 放射组学模型对疾病表型的多项分类(正常与 LVH 与 HCM 与心脏淀粉样变性)具有良好的诊断性能(AUC 0.753)。六个放射组学特征子集在区分心肌健康与疾病和 HCM 表型方面优于平均心肌 T1 值(正常 vs. LVH vs. HCM vs. 心脏淀粉样变性)(T1 与放射组学模型的 AUC,正常:0.549 vs. 0.888;LVH:0.645 vs. 0.790;HCM 0.541 vs. 0.638;心脏淀粉样变性 0.769 vs. 0.840)。我们表明,通过 T1 映射评估的心肌纹理与心脏疾病的特征相关。心肌放射组学表型可以提高 T1 映射对心肌疾病检测和分类的诊断效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641b/8654857/4306b6fc8023/41598_2021_2971_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验