Geographic Information System (GIS) Cell, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
Environ Monit Assess. 2024 Jul 16;196(8):738. doi: 10.1007/s10661-024-12856-z.
Accurate retrieval of LST is crucial for understanding and mitigating the effects of urban heat islands, and ultimately addressing the broader challenge of global warming. This study emphasizes the importance of a single day satellite imageries for large-scale LST retrieval. It explores the impact of Spectral indices of the surface parameters, using machine learning algorithms to enhance accuracy. The research proposes a novel approach of capturing satellite data on a single day to reduce uncertainties in LST estimations. A case study over Chandigarh city using Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine, and Random Forest (RF) reveals RF's superior performance in LST estimations during both summer and winter seasons. All the ML models gave an R-square of above 0.8 and RF with slightly higher R-square during both summer (0.93) and winter (0.85). Building on these findings, the study extends its focus to Ranchi, demonstrating RF's robustness with impressive accuracy in capturing LST variations. The research contributes to bridging existing gaps in large-scale LST estimation methodologies, offering valuable insights for its diverse applications in understanding Earth's dynamic systems.
准确获取长波辐射温度(LST)对于理解和减轻城市热岛效应的影响至关重要,最终有助于应对全球变暖这一更为广泛的挑战。本研究强调了单一天卫星成像在大规模 LST 反演中的重要性。它探讨了利用机器学习算法增强准确性的地表参数光谱指数的影响。该研究提出了一种新的方法,即在单一天捕获卫星数据,以减少 LST 估计中的不确定性。利用极端梯度提升(XGBoost)、轻梯度提升机和随机森林(RF)对昌迪加尔市进行的案例研究表明,RF 在夏季和冬季的 LST 估计中表现出优越的性能。所有的 ML 模型在夏季(0.93)和冬季(0.85)的 R 平方都超过了 0.8,而 RF 的 R 平方略高。在此基础上,该研究将其关注点扩展到了兰契,展示了 RF 在捕捉 LST 变化方面的稳健性和令人印象深刻的准确性。该研究有助于弥合大规模 LST 估计方法中的现有差距,为其在理解地球动态系统方面的各种应用提供了有价值的见解。