Suppr超能文献

预测药品价格。基于采购级数据和机器学习的进展。

Predicting pharmaceutical prices. Advances based on purchase-level data and machine learning.

机构信息

Department of Public Policy, Central European University, Quellenstraße 51, 1100, Vienna, Austria.

World Bank, 1818 H Street, WA DC, 20433, USA.

出版信息

BMC Public Health. 2024 Jul 15;24(1):1888. doi: 10.1186/s12889-024-19171-9.

Abstract

BACKGROUND

Increased costs in the health sector have put considerable strain on the public budgets allocated to pharmaceutical purchases. Faced with such pressures amplified by financial crises and pandemics, national purchasing authorities are presented with a puzzle: how to procure pharmaceuticals of the highest quality for the lowest price. The literature explored a range of impactful factors using data on producer and reference prices, but largely foregone the use of data on individual purchases by diverse public buyers.

METHODS

Leveraging the availability of open data in public procurement from official government portals, the article examines the relationship between unit prices and a host of predictors that account for policies that can be amended nationally or locally. The study uses traditional linear regression (OLS) and a machine learning model, random forest, to identify the best models for predicting pharmaceutical unit prices. To explore the association between a wide variety of predictors and unit prices, the study relies on more than 200,000 purchases in more than 800 standardized pharmaceutical product categories from 10 countries and territories.

RESULTS

The results show significant price variation of standardized products between and within countries. Although both models present substantial potential for predicting unit prices, the random forest model, which can incorporate non-linear relationships, leads to higher explained variance (R = 0.85) and lower prediction error (RMSE = 0.81).

CONCLUSIONS

The results demonstrate the potential of i) tapping into large quantities of purchase-level data in the health care sector and ii) using machine learning models for explaining and predicting pharmaceutical prices. The explanatory models identify data-driven policy interventions for decision-makers seeking to improve value for money.

摘要

背景

医疗领域成本的增加给用于药品采购的公共预算带来了相当大的压力。面对金融危机和大流行病放大的这些压力,国家采购机构面临着一个难题:如何以最低的价格采购最高质量的药品。文献探讨了一系列使用生产商和参考价格数据的有影响力的因素,但在很大程度上忽略了使用不同公共买家的个别采购数据。

方法

利用公共采购中官方政府门户网站提供的公开数据,本文考察了单位价格与一系列可在国家或地方层面调整的政策相关因素之间的关系。该研究使用传统的线性回归(OLS)和机器学习模型随机森林,以确定预测药品单位价格的最佳模型。为了探索各种预测因素与单位价格之间的关联,该研究依赖于来自 10 个国家和地区的 800 多种标准化药品类别中的 20 多万次采购。

结果

研究结果表明,标准化产品在国家之间和国家内部的价格存在显著差异。尽管这两种模型都具有很大的预测单位价格的潜力,但随机森林模型可以包含非线性关系,从而导致更高的解释方差(R=0.85)和更低的预测误差(RMSE=0.81)。

结论

研究结果表明,有潜力:i)利用医疗保健部门的大量采购级数据;ii)使用机器学习模型来解释和预测药品价格。解释模型为决策者提供了有针对性的政策干预措施,以提高物有所值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e24/11247880/ddff00e49af9/12889_2024_19171_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验