Suppr超能文献

磁体、分子与医学。

Magnets, molecules and medicine.

作者信息

Gordon R E

出版信息

Phys Med Biol. 1985 Aug;30(8):741-70. doi: 10.1088/0031-9155/30/8/001.

Abstract

This article provides an introduction to high-resolution NMR with discussion of some of the important hardware considerations related to applying high-resolution NMR in medicine and biology. Experience has shown that multidisciplinary groups usually have to be formed to run NMR spectrometers dedicated for biological use, to cope with the demands imposed by the living systems under investigation and use of the spectrometer system. NMR imaging has obviously had a tremendous impact in medicine and many NMR imagers are being installed in hospitals throughout the world. In comparison to the already well established imaging techniques using CT, radioisotopes and ultrasound the overall experience gained so far is limited and there is undoubtedly a lot of work to be carried out before the usefulness of NMR imaging is fully assessed. The usefulness of NMR spectroscopy as a tool in in vivo biological research is clearly established. Originally based on 31P NMR studies the scope and extent of this type of investigation have now been enhanced by the use of 1H, 13C and 19F NMR and therefore will continue to extend our knowledge of metabolism, especially if NMR tracer studies with 13C and 19F can be shown to have real utility in an analogous fashion to radioisotopes. All of the nuclei discussed can be used to study the metabolism of various types of disease including carcinogenesis. With regard to medicine, the results obtained so far are certainly interesting and undoubtedly contributions will be made to the understanding of disease and related metabolism. At this stage, however, it is perhaps too early to say that NMR spectroscopy will become a routine tool in medicine but the rate of progress over the last ten years does suggest that the use of in vivo spectroscopy in medicine does have a significant future.

摘要

本文介绍了高分辨率核磁共振技术,并讨论了在医学和生物学中应用高分辨率核磁共振技术时一些重要的硬件考量因素。经验表明,通常需要组建多学科团队来操作专门用于生物学研究的核磁共振光谱仪,以应对被研究的生物系统以及光谱仪系统使用所带来的各种要求。核磁共振成像显然已经在医学领域产生了巨大影响,世界各地的医院正在安装许多核磁共振成像仪。与已经成熟的使用CT、放射性同位素和超声的成像技术相比,目前所获得的总体经验仍然有限,在全面评估核磁共振成像的实用性之前,无疑还有大量工作要做。核磁共振波谱作为体内生物学研究工具的实用性已得到明确证实。最初基于31P核磁共振研究,现在通过使用1H、13C和19F核磁共振,这类研究的范围和程度得到了扩展,因此将继续拓展我们对新陈代谢的认识,特别是如果13C和19F的核磁共振示踪研究能够像放射性同位素那样显示出实际效用的话。所讨论的所有原子核都可用于研究包括致癌作用在内的各种疾病的新陈代谢。就医学而言,目前所获得的结果肯定很有趣,无疑将有助于对疾病及相关新陈代谢的理解。然而,在现阶段,说核磁共振波谱将成为医学中的常规工具可能还为时过早,但过去十年的进展速度确实表明,体内波谱在医学中的应用确实有着重要的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验