Li Haorong, Smeriglio Noah, Ni Jiawei, Wang Yan, Sekine Shiori, Hao Ling
Department of Chemistry, The George Washington University, Washington, DC, 20052, USA.
National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
Res Sq. 2024 Jul 3:rs.3.rs-4590410. doi: 10.21203/rs.3.rs-4590410/v1.
Protein biotinylation has been widely used in biotechnology with various labeling and enrichment strategies. However, different enrichment strategies have not been systematically evaluated due to the lack of a benchmarking model for fair comparison. Most biotinylation proteomics workflows suffer from lengthy experimental steps, non-specific bindings, limited throughput, and experimental variability. To address these challenges, we designed a two-proteome model, where biotinylated yeast proteins were spiked in unlabeled human proteins, allowing us to distinguish true enrichment from non-specific bindings. Using this benchmarking model, we compared common biotinylation proteomics methods and provided practical selection guidelines. We significantly optimized and shortened sample preparation from 3 days to 9 hours, enabling fully-automated 96-well plate sample processing. Next, we applied this optimized and automated workflow for proximity labeling to investigate the intricate interplay between mitochondria and lysosomes in living cells under both healthy state and mitochondrial damage. Our results suggested a time-dependent proteome remodeling and dynamic translocation within mitochondria and between mitochondria and lysosomes upon mitochondrial damage. This newly established benchmarking model and the fully-automated 9-hour workflow can be readily applied to the broad fields of protein biotinylation to study protein interaction and organelle dynamics.
蛋白质生物素化已通过各种标记和富集策略在生物技术中得到广泛应用。然而,由于缺乏用于公平比较的基准模型,不同的富集策略尚未得到系统评估。大多数生物素化蛋白质组学工作流程存在实验步骤冗长、非特异性结合、通量有限和实验变异性等问题。为应对这些挑战,我们设计了一种双蛋白质组模型,将生物素化的酵母蛋白质掺入未标记的人类蛋白质中,使我们能够区分真正的富集和非特异性结合。使用这个基准模型,我们比较了常见的生物素化蛋白质组学方法,并提供了实用的选择指南。我们将样品制备从3天显著优化并缩短至9小时,实现了96孔板样品的全自动处理。接下来,我们将这种优化的自动化工作流程应用于邻近标记,以研究健康状态和线粒体损伤状态下活细胞中线粒体与溶酶体之间复杂的相互作用。我们的结果表明,线粒体损伤后,线粒体内以及线粒体与溶酶体之间存在时间依赖性的蛋白质组重塑和动态易位。这个新建立的基准模型和9小时全自动工作流程可轻松应用于蛋白质生物素化的广泛领域,以研究蛋白质相互作用和细胞器动态。