Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
Institute for Liver Diseases of Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230022, P. R. China.
Adv Healthc Mater. 2024 Nov;13(28):e2401619. doi: 10.1002/adhm.202401619. Epub 2024 Jul 16.
Increased inflammatory responses and oxidative stress at the wound site following skin trauma impair healing. Furthermore, skin scarring places fibroblasts under severe mechanical stress and aggravates pathological fibrosis. A novel liposomal composite hydrogel is engineered for wound microenvironment remodeling, incorporating dual-loaded liposomes into gelatin methacrylate to create a nanocomposite hydrogel. Notably, tetrahydrocurcumin (THC) and hepatocyte growth factor (HGF) are encapsulated in the hydrophobic and hydrophilic layers of liposomes, respectively. The composite hydrogel maintains porous nanoarchitecture, demonstrating sustainable THC and HGF release and enhanced mechanical properties and biocompatibility. This system effectively promotes cell proliferation and angiogenesis and attenuates apoptosis. It decreases the expression of the inflammatory factors by inhibiting the high-mobility group box /receptor for advanced glycation end product/NF-κB (HMGB1/RAGE/NF-κB)pathway and increases macrophage polarization from M1 to M2 in vitro, effectively controlling inflammatory responses. It exhibits remarkable antioxidant properties by scavenging excess reactive oxygen species and free radicals. Most importantly, it effectively prevents scar formation by restraining the transforming growth factor beta (TGF-β)/Smads pathway that downregulates associated fibrotic factors. It demonstrates strong therapeutic effects against inflammation and fibrosis in a rat skin wound model with biosafety, advancing the development of innovative hydrogel-based therapeutic delivery strategies for clinical scarless wound therapy.
皮肤创伤后伤口部位炎症反应和氧化应激增加会损害愈合。此外,皮肤瘢痕会使成纤维细胞承受严重的机械应力,并加重病理性纤维化。设计了一种新型的脂质体复合水凝胶用于伤口微环境重塑,将双载脂质体包封到明胶甲基丙烯酰中以形成纳米复合水凝胶。值得注意的是,四氢姜黄素(THC)和肝细胞生长因子(HGF)分别被包裹在脂质体的疏水层和亲水层中。复合水凝胶保持多孔纳米结构,表现出可持续的 THC 和 HGF 释放以及增强的机械性能和生物相容性。该系统通过抑制高迁移率族蛋白 B1/晚期糖基化终产物受体/核因子-κB(HMGB1/RAGE/NF-κB)通路有效促进细胞增殖和血管生成,减轻细胞凋亡。它通过体外将巨噬细胞从 M1 极化为 M2 来减少炎症因子的表达,从而有效控制炎症反应。它通过清除过多的活性氧和自由基表现出显著的抗氧化特性。最重要的是,它通过抑制转化生长因子β(TGF-β)/Smads 通路来有效防止瘢痕形成,下调相关的纤维化因子。它在大鼠皮肤创伤模型中具有良好的生物安全性,对炎症和纤维化具有强大的治疗作用,为临床无瘢痕创伤治疗推进了创新的水凝胶治疗药物输送策略的发展。