Langenbucher Achim, Szentmáry Nóra, Wendelstein Jascha, Cayless Alan, Hoffmann Peter, Goggin Michael
Department of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany.
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.
Acta Ophthalmol. 2025 Feb;103(1):e19-e30. doi: 10.1111/aos.16742. Epub 2024 Jul 16.
The purpose of this study is to compare the reconstructed corneal power (RCP) by working backwards from the post-implantation spectacle refraction and toric intraocular lens power and to develop the models for mapping preoperative keratometry and total corneal power to RCP.
Retrospective single-centre study involving 442 eyes treated with a monofocal and trifocal toric IOL (Zeiss TORBI and LISA). Keratometry and total corneal power were measured preoperatively and postoperatively using IOLMaster 700. Feedforward neural network and multilinear regression models were derived to map keratometry and total corneal power vector components (equivalent power EQ and astigmatism components C0 and C45) to the respective RCP components.
Mean preoperative/postoperative C0 for keratometry and total corneal power was -0.14/-0.08 dioptres and -0.30/-0.24 dioptres. All mean C45 components ranged between -0.11 and -0.20 dioptres. With crossvalidation, the neural network and regression models showed comparable results on the test data with a mean squared prediction error of 0.20/0.18 and 0.22/0.22 dioptres and on the training data the neural network models outperformed the regression models with 0.11/0.12 and 0.22/0.22 dioptres for predicting RCP from preoperative keratometry/total corneal power.
Based on our dataset, both the feedforward neural network and multilinear regression models showed good precision in predicting the power vector components of RCP from preoperative keratometry or total corneal power. With a similar performance in crossvalidation and a simple implementation in consumer software, we recommend implementation of regression models in clinical practice.
本研究的目的是通过植入后眼镜验光和环曲面人工晶状体屈光度逆向推算重建角膜屈光力(RCP),并建立术前角膜曲率测量值和总角膜屈光力与RCP之间的映射模型。
一项回顾性单中心研究,纳入442只接受单焦点和三焦点环曲面人工晶状体(蔡司TORBI和LISA)治疗的眼睛。术前和术后使用IOLMaster 700测量角膜曲率和总角膜屈光力。推导前馈神经网络和多元线性回归模型,将角膜曲率测量值和总角膜屈光力矢量分量(等效屈光力EQ和散光分量C0及C45)映射到各自的RCP分量。
角膜曲率测量值和总角膜屈光力的术前/术后平均C0分别为-0.14/-0.08屈光度和-0.30/-0.24屈光度。所有平均C45分量在-0.11至-0.20屈光度之间。通过交叉验证,神经网络和回归模型在测试数据上显示出可比的结果,平均平方预测误差分别为0.20/0.18和0.22/0.22屈光度,在训练数据上,从术前角膜曲率测量值/总角膜屈光力预测RCP时,神经网络模型优于回归模型,误差分别为0.11/0.12和0.22/0.22屈光度。
基于我们的数据集,前馈神经网络和多元线性回归模型在从术前角膜曲率测量值或总角膜屈光力预测RCP的屈光力矢量分量方面均显示出良好的精度。鉴于在交叉验证中表现相似且在消费软件中易于实现,我们建议在临床实践中采用回归模型。