Suppr超能文献

洪堡-阿德莱德散光型人工晶状体列线图:如何根据术前IOLMaster 700角膜曲率计测量值和散光型人工晶状体植入术中的总角膜屈光力预测角膜屈光力矢量。

The Homburg-Adelaide toric IOL nomogram: How to predict corneal power vectors from preoperative IOLMaster 700 keratometry and total corneal power in toric IOL implantation.

作者信息

Langenbucher Achim, Szentmáry Nóra, Wendelstein Jascha, Cayless Alan, Hoffmann Peter, Goggin Michael

机构信息

Department of Experimental Ophthalmology, Saarland University, Homburg/Saar, Germany.

Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg/Saar, Germany.

出版信息

Acta Ophthalmol. 2025 Feb;103(1):e19-e30. doi: 10.1111/aos.16742. Epub 2024 Jul 16.

Abstract

PURPOSE

The purpose of this study is to compare the reconstructed corneal power (RCP) by working backwards from the post-implantation spectacle refraction and toric intraocular lens power and to develop the models for mapping preoperative keratometry and total corneal power to RCP.

METHODS

Retrospective single-centre study involving 442 eyes treated with a monofocal and trifocal toric IOL (Zeiss TORBI and LISA). Keratometry and total corneal power were measured preoperatively and postoperatively using IOLMaster 700. Feedforward neural network and multilinear regression models were derived to map keratometry and total corneal power vector components (equivalent power EQ and astigmatism components C0 and C45) to the respective RCP components.

RESULTS

Mean preoperative/postoperative C0 for keratometry and total corneal power was -0.14/-0.08 dioptres and -0.30/-0.24 dioptres. All mean C45 components ranged between -0.11 and -0.20 dioptres. With crossvalidation, the neural network and regression models showed comparable results on the test data with a mean squared prediction error of 0.20/0.18 and 0.22/0.22 dioptres and on the training data the neural network models outperformed the regression models with 0.11/0.12 and 0.22/0.22 dioptres for predicting RCP from preoperative keratometry/total corneal power.

CONCLUSIONS

Based on our dataset, both the feedforward neural network and multilinear regression models showed good precision in predicting the power vector components of RCP from preoperative keratometry or total corneal power. With a similar performance in crossvalidation and a simple implementation in consumer software, we recommend implementation of regression models in clinical practice.

摘要

目的

本研究的目的是通过植入后眼镜验光和环曲面人工晶状体屈光度逆向推算重建角膜屈光力(RCP),并建立术前角膜曲率测量值和总角膜屈光力与RCP之间的映射模型。

方法

一项回顾性单中心研究,纳入442只接受单焦点和三焦点环曲面人工晶状体(蔡司TORBI和LISA)治疗的眼睛。术前和术后使用IOLMaster 700测量角膜曲率和总角膜屈光力。推导前馈神经网络和多元线性回归模型,将角膜曲率测量值和总角膜屈光力矢量分量(等效屈光力EQ和散光分量C0及C45)映射到各自的RCP分量。

结果

角膜曲率测量值和总角膜屈光力的术前/术后平均C0分别为-0.14/-0.08屈光度和-0.30/-0.24屈光度。所有平均C45分量在-0.11至-0.20屈光度之间。通过交叉验证,神经网络和回归模型在测试数据上显示出可比的结果,平均平方预测误差分别为0.20/0.18和0.22/0.22屈光度,在训练数据上,从术前角膜曲率测量值/总角膜屈光力预测RCP时,神经网络模型优于回归模型,误差分别为0.11/0.12和0.22/0.22屈光度。

结论

基于我们的数据集,前馈神经网络和多元线性回归模型在从术前角膜曲率测量值或总角膜屈光力预测RCP的屈光力矢量分量方面均显示出良好的精度。鉴于在交叉验证中表现相似且在消费软件中易于实现,我们建议在临床实践中采用回归模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d33/11704817/ef40e65e95da/AOS-103-e19-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验